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Problem description

Goal: Learn causes of response Y among covariates X.
Setting: Two repetitions of the same set of experiments.



Problem description

Goal: Learn causes of response Y among covariates X.
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Problems:
(A) X and Y come from separate sets of experiments
(B) We observe (X, Y) in both sets of experiments

(C) We observe (X, Y) in a single set of experiments



Underlying SCM and shift interventions
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Underlying SCM and shift interventions

Underlying SCM

Shift interventions

Data

H:= Ny

X == A(H, X, Y) + Nx
Y = B'X +~'"H + Ny

HY = N
Xti= AHYL XY, YY) + Ny + W1
Y= B'X + 4 H 4 Nys

H? := Ny
X% = A(H?, X2, Y?) + Ny2 +
Y2 = BIX? + 4 H? + Ny

Same W* for all rows
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Two repetitions of the same experiments
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Different noise variables
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Two repetitions of the same experiments

H:= Ny
X = A(H, X, Y) + Nx

Y1 = BIXY 4y H + Nys

V2= X2+ 4 H? + Nye

(X%, Y1)

é

(X%,Y?)

X

Y= XY+ 4t H + Ny

X :=A(H,X.Y) + Ny
gt At
Y =B X +~'H+ Ny Y = BX +4tH + Ny,
HY = Nip H? = Ny H' =N, N
X1i= AGHY, XU YY) 4 Ny + W [ X2 = A(H?, X2, Y2) + Ny + X1 = A(HY X YY) + Ny, + W1 AH2L X2 Y2+ N

BEX? +4tH? + N,

§

(x4, Y1)

Same underlying SCM

Different noise variables

Same shift interventions

Two separate data sets
for each intervention

§

(X2,Y?)




More detailed problem description
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Goal: Learn causes of response Y among covariates X.
Problems:

(A) X and Y come from separate sets of experiments (X, Y)

(B) We observe (X, Y) in both sets of experiments  (X,Y,X,Y)
(C) We observe (X, Y) in a single set of experiments  (X,Y)



Strategy for single experiment problem

Permute rows to turn one data set into two:

With permutation matrices P! and P?, let

Xl Yl o o Plxl PlYl
(XvY) = (XZ Y2> ) (XvY) = <P2x2 P2Y2> .

Use (X, Y) as a substitute for (X,Y).



OLS: Baseline

5018 = (TH ecov(X9)) T I cov(X, ¥H)
BOLS (th) Ixty

Method: Variable with largest BOLS value is taken as most likely
parent or ancestor.



Dependence between the two sets of experiments
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Dependence between the two sets of experiments

Y and X3 confounded by H but
Y 1L X3 by global Markov




Dependence between the two sets of experiments

Y and X4 confounded by X



Dependence between the two sets of experiments

Y and X, co~nfounded by X1
(v) and Y Lg X,



Strong Reichenbach’s Common Cause Principle
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Strong Reichenbach’s Common Cause Principle

() /@\/\ n

/@\/;X‘/Q\H/ X Kg X; if and only if
° ‘\;\‘ » there is a non-hidden
T confounder X, of X; and X;,

(%) (+) or
() X$< i~ > X; is an ancestor of X;, or

/@\>;/ » X is an ancestor of X;
©, :



Novel methods

Idea: Break hidden confounding by using
\N/k instead of YX, or
X instead of X*.



POLS: Learning from unpaired data

BPOLS . (Zk . cov(Xk)) - SOK_ L cov(XK, YK)
BPOLS . — (XtX)~ 1xty

Method: Variable with largest BPOLS value is taken as most likely
parent or ancestor.



DPOLS: Learning from paired data

gPPOLS . (zk , cov(XK, xk)) K cov(XK, YK
ﬁDPOLS (th) lxtY

Method: Variable with largest BPPOLS yalue is taken as most likely
parent or ancestor.



DPOLS finds correct parents given distribution

cov(Xk, YK) = cov(X¥, BEXK 4 v HK + N;k) = cov(Xk, X¥)B

SO

cov(XX, )~<k)> Z cov(X¥, Y¥)

k=1

] =

j3PPOLS _ (
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= ( (Xk,)N(k)> Zcov(Xk,?k)ﬁ
k=1 k=1
=

(]
Q
Q
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(argument from unpublished notes by Niklas Pfister)



Simulating data

1. Simulate 1000 random DAGs and coefficient matrices
2. Choose data parameters (number of observations, etc.)

3. Simulate data sets from the 1000 DAGs using parameters



Fixed parameters in this presentation

30 X's and 30 H's

NYj"a NXJ’v I’\\I/?H I/\\I/)’?, lrlg N(O7 1)
Npi, Nz = N(0,52)
W ' N(0,7%)



Evaluating the methods

1. Forall ne{0,...,#X}

a. Select n highest ranked
variables.

b. Calculate true positive-
and false positive rates.

2. Draw ROC curve
3. Calculate AUC
4. Average 1000 AUCs
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Random baseline methods

all-random random-after-parents

Random ranking of variables. Ranks correct parents highest;
ranks remaining variables in
random order.



Performance of methods for varying number of environments

Average AUC
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Performance of methods for varying number of obs. per environment.

Average AUC
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Conclusions

» DPOLS

» selects correct parents asymptotically on truly separate data
» performs well on permuted data
» is able to select some extra ancestors after selecting all parents

» POLS

» is viable for causal discovery from unpaired data
» is not as good as DPOLS on paired data
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» POLS

» is viable for causal discovery from unpaired data
» is not as good as DPOLS on paired data

Future work:
How many variables to select?
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