Causal Discovery from Interventional Data Bachelor's Thesis

Adam Gorm Hoffmann

Supervisors

Jonas Peters Niklas Pfister

Department of Mathematical Sciences University of Copenhagen

September 2021

Agenda

- ${f 1.}$ Problems addressed by the thesis
- 2. Proposed methods
- 3. Simulation studies and results
- 4. Conclusion

Problem description

Goal: Learn causes of response Y among covariates X. **Setting**: Two repetitions of the same set of experiments.

Problem description

Goal: Learn causes of response Y among covariates X. **Setting**: Two repetitions of the same set of experiments.

Problems:

- **(A)** X and Y come from separate sets of experiments
- **(B)** We observe (X, Y) in both sets of experiments
- (C) We observe (X, Y) in a single set of experiments

Underlying SCM and shift interventions

Underlying SCM

$$H := N_H$$

$$X := A(H, X, Y) + N_X$$

$$Y := \beta^t X + \gamma^t H + N_Y$$

Underlying SCM and shift interventions

Underlying SCM and shift interventions

Two repetitions of the same experiments

$$H := N_H$$

$$X := A(H, X, Y) + N_X$$

$$Y := \beta^t X + \gamma^t H + N_Y$$

$$\begin{split} \widetilde{H} &:= \widetilde{N}_{\widetilde{H}} \\ \widetilde{X} &:= A(\widetilde{H}, \widetilde{X}, \widetilde{Y}) + \widetilde{N}_{\widetilde{X}} \\ \widetilde{Y} &:= \beta^t \widetilde{X} + \gamma^t \widetilde{H} + \widetilde{N}_{\widetilde{Y}} \end{split}$$

Same underlying SCM **Different** noise variables

Two repetitions of the same experiments

Same underlying SCM

Different noise variables

Same shift interventions

Two repetitions of the same experiments

Same underlying SCM
Different noise variables
Same shift interventions
Two separate data sets
for each intervention

More detailed problem description

Goal: Learn causes of response Y among covariates X.

More detailed problem description

Goal: Learn causes of response Y among covariates X.

Problems:

- (A) X and Y come from separate sets of experiments (X, Y)
- **(B)** We observe (X, Y) in both sets of experiments $(X, Y, \widetilde{X}, \widetilde{Y})$
- (C) We observe (X, Y) in a single set of experiments (X, Y)

Strategy for single experiment problem

Permute rows to turn one data set into two:

With permutation matrices P^1 and P^2 , let

$$(\mathbf{X},\mathbf{Y}) = \begin{pmatrix} \mathbf{X}^1 & \mathbf{Y}^1 \\ \mathbf{X}^2 & \mathbf{Y}^2 \end{pmatrix}, \quad (\breve{\mathbf{X}},\breve{\mathbf{Y}}) = \begin{pmatrix} P^1\mathbf{X}^1 & P^1\mathbf{Y}^1 \\ P^2\mathbf{X}^2 & P^2\mathbf{Y}^2 \end{pmatrix}.$$

Use (\mathbf{X}, \mathbf{Y}) as a substitute for (\mathbf{X}, \mathbf{Y}) .

OLS: Baseline

$$\beta^{\text{OLS}} := \left(\sum_{k=1}^{K} \text{cov}(X^k)\right)^{-1} \sum_{k=1}^{K} \text{cov}(X^k, Y^k)$$
$$\hat{\beta}^{\text{OLS}} := (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \mathbf{Y}$$

Method: Variable with largest $\hat{\beta}^{OLS}$ value is taken as most likely parent or ancestor.

Y and X_3 confounded by H

Y and X_3 confounded by H but $Y \perp X_3$ by global Markov

Y and X_4 confounded by X_1

Y and X_4 confounded by X_1 and $Y \not\perp\!\!\!\perp_{\mathcal{G}} \widetilde{X}_4$

Strong Reichenbach's Common Cause Principle

 $Y \not\perp_{\mathcal{G}} \widetilde{X}_i$ if and only if

- ► there is a **non-hidden** confounder X_{ℓ} of Y and X_{i} , or
- $ightharpoonup X_i$ is an ancestor of Y

Strong Reichenbach's Common Cause Principle

 $X_i \not\perp_{\mathcal{G}} \widetilde{X}_i$ if and only if

- ► there is a **non-hidden** confounder X_{ℓ} of X_{j} and X_{i} , or
- \triangleright X_i is an ancestor of X_i , or
- $ightharpoonup X_i$ is an ancestor of X_i

Novel methods

Break hidden confounding by using

 \widetilde{Y}^k instead of Y^k , or \widetilde{X}^k instead of X^k .

POLS: Learning from unpaired data

$$\beta^{\text{POLS}} := \left(\sum_{k=1}^{K} \text{cov}(X^k)\right)^{-1} \sum_{k=1}^{K} \text{cov}(X^k, \widetilde{Y}^k)$$
$$\hat{\beta}^{\text{POLS}} := (\mathbf{X}^t \mathbf{X})^{-1} \mathbf{X}^t \widetilde{\mathbf{Y}}$$

Method: Variable with largest $\hat{\beta}^{POLS}$ value is taken as most likely parent or ancestor.

DPOLS: Learning from paired data

$$\beta^{\text{DPOLS}} := \left(\sum_{k=1}^{K} \text{cov}(X^k, \widetilde{X}^k)\right)^{-1} \sum_{k=1}^{K} \text{cov}(X^k, \widetilde{Y}^k)$$
$$\hat{\beta}^{\text{DPOLS}} := (\mathbf{X}^t \widetilde{\mathbf{X}})^{-1} \mathbf{X}^t \widetilde{\mathbf{Y}}$$

Method: Variable with largest $\hat{\beta}^{\mathrm{DPOLS}}$ value is taken as most likely parent or ancestor.

DPOLS finds correct parents given distribution

$$cov(X^k, \widetilde{Y}^k) = cov(X^k, \beta^t \widetilde{X}^k + \gamma^t \widetilde{H}^k + \widetilde{N}_{\widetilde{Y}^k}) = cov(X^k, \widetilde{X}^k)\beta$$
so

$$\beta^{\text{DPOLS}} = \left(\sum_{k=1}^{K} \text{cov}(X^k, \widetilde{X}^k)\right)^{-1} \sum_{k=1}^{K} \text{cov}(X^k, \widetilde{Y}^k)$$
$$= \left(\sum_{k=1}^{K} \text{cov}(X^k, \widetilde{X}^k)\right)^{-1} \sum_{k=1}^{K} \text{cov}(X^k, \widetilde{X}^k)\beta$$
$$= \beta$$

(argument from unpublished notes by Niklas Pfister)

Simulating data

- 1. Simulate 1000 random DAGs and coefficient matrices
- 2. Choose data parameters (number of observations, etc.)
- 3. Simulate data sets from the 1000 DAGs using parameters

Fixed parameters in this presentation

30 X's and 30 H's

$$egin{aligned} N_{Y_j^i}, N_{X_j^i}, \widetilde{N}_{\widetilde{Y}_j^i}, \widetilde{N}_{\widetilde{X}_j^i} &\overset{ ext{iid.}}{\sim} \mathcal{N}(0, 1) \ N_{H_j^i}, \widetilde{N}_{\widetilde{H}_j^i} &\overset{ ext{iid.}}{\sim} \mathcal{N}(0, 5^2) \ W_j^i &\overset{ ext{iid.}}{\sim} \mathcal{N}(0, 7^2) \end{aligned}$$

Evaluating the methods

- **1.** For all $n \in \{0, ..., \#X\}$
 - **a.** Select *n* highest ranked variables.
 - **b.** Calculate true positiveand false positive rates.
- 2. Draw ROC curve
- **3.** Calculate AUC
- 4. Average 1000 AUCs

Random baseline methods

all-randomRandom ranking of variables.

random-after-parents
Ranks correct parents highest;
ranks remaining variables in
random order.

Performance of methods for varying number of environments

Performance of methods for varying number of obs. per environment.

Conclusions

- ► DPOLS
 - selects correct parents asymptotically on truly separate data
 - ▶ performs well on permuted data
 - ▶ is able to select some extra ancestors after selecting all parents
- ► POLS
 - ▶ is viable for causal discovery from unpaired data
 - ▶ is not as good as DPOLS on paired data

Conclusions

- ► DPOLS
 - selects correct parents asymptotically on truly separate data
 - performs well on permuted data
 - ▶ is able to select some extra ancestors after selecting all parents
- ► POLS
 - ▶ is viable for causal discovery from unpaired data
 - ▶ is not as good as DPOLS on paired data

Future work:

How many variables to select?