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Problem description

Goal: Learn causes of response Y among covariates X .
Setting: Two repetitions of the same set of experiments.

Problems:

(A) X and Y come from separate sets of experiments

(B) We observe (X ,Y ) in both sets of experiments

(C) We observe (X ,Y ) in a single set of experiments
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Underlying SCM and shift interventions

Underlying SCM

H := NH

X := A(H,X ,Y ) + NX

Y := βtX + γtH + NY

H1 := NH1

X 1 := A(H1,X 1,Y 1) + NX 1 + W 1

Y 1 := βtX 1 + γtH1 + NY 1

H2 := NH2

X 2 := A(H2,X 2,Y 2) + NX 2 + W 2

Y 2 := βtX 2 + γtH2 + NY 2

Shift interventions

(X2,Y2) =

 x2,1 y2,1

...
...

x2,n2 y2,n2

(X1,Y1) =

 x1,1 y1,1

...
...

x1,n1 y1,n1

Data

Same W 1 for all rows Same W 2 for all rows
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Two repetitions of the same experiments

H := NH

X := A(H,X ,Y ) + NX

Y := βtX + γtH + NY

H1 := NH1

X 1 := A(H1,X 1,Y 1) + NX 1 + W 1

Y 1 := βtX 1 + γtH1 + NY 1

H2 := NH2

X 2 := A(H2,X 2,Y 2) + NX 2 + W 2

Y 2 := βtX 2 + γtH2 + NY 2

(X2,Y2)(X1,Y1)

H̃ := Ñ
H̃

X̃ := A(H̃, X̃ , Ỹ ) + Ñ
X̃

Ỹ := βtX̃ + γtH̃ + Ñ
Ỹ

H̃1 := Ñ
H̃1

X̃ 1 := A(H̃1, X̃ 1, Ỹ 1) + N
X̃ 1 + W 1

Ỹ 1 := βtX̃ 1 + γtH̃1 + N
Ỹ 1

H̃2 := N
H̃2

X̃ 2 := A(H̃2, X̃ 2, Ỹ 2) + N
X̃ 2 + W 2

Ỹ 2 := βtX̃ 2 + γtH̃2 + N
Ỹ 2

(X̃2, Ỹ2)(X̃1, Ỹ1)

Same underlying SCM

Different noise variables
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Ỹ
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H̃1

X̃ 1 := A(H̃1, X̃ 1, Ỹ 1) + N
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More detailed problem description

(X1,Y1) (X2,Y2) (X̃1, Ỹ1) (X̃2, Ỹ2)

X =

(
X1

X2

)
, Y =

(
Y1

Y2

)
X̃ =

(
X̃1

X̃2

)
, Ỹ =

(
Ỹ1

Ỹ2

)

Goal: Learn causes of response Y among covariates X .

Problems:

(A) X and Y come from separate sets of experiments (X, Ỹ)

(B) We observe (X ,Y ) in both sets of experiments (X,Y, X̃, Ỹ)

(C) We observe (X ,Y ) in a single set of experiments (X,Y)
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Strategy for single experiment problem

Permute rows to turn one data set into two:

With permutation matrices P1 and P2, let

(X,Y) =

(
X1 Y1

X2 Y2

)
, (X̆, Y̆) =

(
P1X1 P1Y1

P2X2 P2Y2

)
.

Use (X̆, Y̆) as a substitute for (X̃, Ỹ).



OLS: Baseline

βOLS :=
(∑K

k=1 cov(X k)
)−1∑K

k=1 cov(X k ,Y k)

β̂OLS := (XtX)−1XtY

Method: Variable with largest β̂OLS value is taken as most likely
parent or ancestor.



Dependence between the two sets of experiments

X1
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Y

X4
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H X3

W3
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X̃1
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Ỹ

X̃4

X̃5

H̃X̃3
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Ỹ

X̃4

X̃5

H̃X̃3

Y and X3 confounded by H

but
Y ⊥⊥ X̃3 by global Markov
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Strong Reichenbach’s Common Cause Principle
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Y 6⊥⊥G X̃i if and only if

I there is a non-hidden
confounder X` of Y and Xi ,
or

I Xi is an ancestor of Y

I Xj is an ancestor of Xi
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Novel methods

Idea: Break hidden confounding by using
Ỹ k instead of Y k , or
X̃ k instead of X k .



POLS: Learning from unpaired data

βPOLS :=
(∑K

k=1 cov(X k)
)−1∑K

k=1 cov(X k , Ỹ k)

β̂POLS := (XtX)−1XtỸ

Method: Variable with largest β̂POLS value is taken as most likely
parent or ancestor.



DPOLS: Learning from paired data

βDPOLS :=
(∑K

k=1 cov(X k , X̃ k)
)−1∑K

k=1 cov(X k , Ỹ k)

β̂DPOLS := (XtX̃)−1XtỸ

Method: Variable with largest β̂DPOLS value is taken as most likely
parent or ancestor.



DPOLS finds correct parents given distribution

cov(X k , Ỹ k) = cov(X k , βtX̃ k + γtH̃k + Ñ
Ỹ k ) = cov(X k , X̃ k)β

so

βDPOLS =

(
K∑

k=1

cov(X k , X̃ k)

)−1 K∑
k=1

cov(X k , Ỹ k)

=

(
K∑

k=1

cov(X k , X̃ k)

)−1 K∑
k=1

cov(X k , X̃ k)β

= β

(argument from unpublished notes by Niklas Pfister)



Simulating data

1. Simulate 1000 random DAGs and coefficient matrices

2. Choose data parameters (number of observations, etc.)

3. Simulate data sets from the 1000 DAGs using parameters



Fixed parameters in this presentation

30 X ’s and 30 H ’s

NY i
j
,NX i

j
, ÑỸ i

j
, ÑX̃ i

j

iid.∼ N (0, 1)

NH i
j
, ÑH̃ i

j

iid.∼ N (0, 52)

W i
j

iid.∼ N (0, 72)



Evaluating the methods

1. For all n ∈ {0, . . . ,#X}
a. Select n highest ranked

variables.
b. Calculate true positive-

and false positive rates.

2. Draw ROC curve

3. Calculate AUC

4. Average 1000 AUCs
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Random baseline methods

all-random
Random ranking of variables.

random-after-parents
Ranks correct parents highest;
ranks remaining variables in
random order.



Performance of methods for varying number of environments

Permuted Truly separate
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Performance of methods for varying number of obs. per environment.
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Conclusions

I DPOLS

I selects correct parents asymptotically on truly separate data
I performs well on permuted data
I is able to select some extra ancestors after selecting all parents

I POLS

I is viable for causal discovery from unpaired data
I is not as good as DPOLS on paired data

Future work:
How many variables to select?
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