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Abstract

We consider the task of learning the causes of a response in three closely

related problems, all related to the scenario of two separate sets of inter-

ventional experiments with hidden variables and unknown intervention

targets. In the first problem (which we haven’t seen studied before), the

covariates are observed in the first set of experiments and the response

is observed in the second set of experiments, yielding unpaired data. We

present a novel method, POLS, for its solution. In the second problem

both the response and the covariates are observed in both sets of experi-

ments; in the third problem we only conduct one set of experiments and

then, in order to be able to use the methods from the first two problems

(which require a second data set), we permute the rows to emulate data

from a second set of experiments. We present another novel method,

DPOLS, for the last two problems, and give a proof that it will select

the correct parents asymptotically in a specific case. We give a strength-

ened version of Reichenbach’s Common Cause Principle as motivation

for the methods and investigate their performance through large scale

simulation experiments. Our results show that both POLS and DPOLS

beat the baseline methods. The results also indicate that DPOLS finds

the correct parents asymptotically in many cases, including on permuted

data, and that it is even useful for finding extra ancestors after having

selected all parents.

Contributions from others

Jonas Peters and Niklas Pfister, my supervisors from the University of

Copenhagen, originated the idea of two separate data sets (X,Y) and

(X̃, Ỹ) linked only through the shift interventions W , the idea that this

situation can be emulated by permuting the rows of a single dataset, as

well as the specific methods POLS and DPOLS, except for the names

which are my creation. The argument showing that βDPOLS = β, when

cov(W ) is invertible, is from an unpublished set of notes by Niklas Pfis-

ter.
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Scripts for running and analyzing simulations are available on GitHub

at https://github.com/adamgorm/bsc-simulations.
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Throughout German literature of the last ten years we find “to condition” almost

everywhere used in place of “to cause” or “to effect.” Since it is more abstract and

indefinite it says less than it implies, and consequently leaves a little back door open

to please those whose secret consciousness of their own incapacity inspires them

with a continual fear of all definite expressions.

ARTHUR SCHOPENHAUER
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1 INTRODUCTION 1

1 Introduction

Discovering causal relationships is a fundamental goal of science. While randomized controlled

experiments have long been used to distinguish causation from correlation, researchers have

since proposed new methods for causal learning in non-randomized settings. This includes

independence-based methods (e.g., the PC algorithm; Spirtes et al., 2000) that, under the

assumption of faithfulness, use the conditional independence statements of the observational

distribution to find the Markov equivalence class of the directed acyclic graph entailed by the

underlying structural causal model. If one is primarily interested in the causes of a specific vari-

able, then the Markov equivalence class may disappoint, since many orientations of the edges can

be possible. ICP, a more recent method proposed by Peters et al. (2016), will find a subset of the

direct causes of a response given data from different environments, e.g., different interventional

settings.

Sometimes it may not be possible to observe the covariates and the response in the same

experiment; perhaps the very act of measuring the covariates physically destroys the response.

The researcher may then choose to conduct all experiments twice, first observing the covariates,

then the response. If this is done with a series of experiments, then the only connection between

the response and covariates from the separate experiments is the experimental setup itself, since

any specific pairing of the observations will be arbitrary. Is any information about cause and

effect left in this unpaired data set? When each experimental setup consists of intervening

on a single known covariate, it is clear that a distribution shift of the response in a given

experiment means that the intervention target is a cause of the response. It is, however, less

clear whether enough information is left if we don’t know the intervention targets. To the best

of our knowledge, no one has studied this setting yet.

In this thesis, we present the method POLS for learning the causes of a response from

unpaired data with unknown intervention targets in the presence of hidden variables. We present

a strong version of Reichenbach’s Common Cause Principle as a heuristic argument that the

broken link between response and covariate can be a strength, rather than a weakness, since

it removes hidden confounding. This motivates the question of whether POLS is useful, even

when paired data is available? It is, at the very least, usable, since permuting the response

vector within experimental setups will emulate the situation with unpaired data; by using the

same permutation on each column of the matrix of covariate observations, we can emulate an

entire data set from a separate set of experiments, leaving us with two complete data sets. We

investigate whether POLS is useful on permuted data, and present another method, DPOLS,

specifically for this setting. Niklas Pfister has proved that, given complete knowledge of the

observational distributions, DPOLS can correctly identify the direct causes of a response, when

applied on data from two separate experiments.

One of our main contributions is a series of large scale simulation experiments comparing

POLS, DPOLS, and various baseline methods, both in the setting with data from two separate

sets of experiments, and in the setting where a single data set is permuted.
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2 Causal models

2.1 Why do we need more than statistical models?

Observational distributions give a wealth of useful knowledge. If we know the joint distribution

of V (infected with corona virus), C (coughing), and F (went to a party last week), then we

can find the probability P (V | C = 1, F = 1) of a person being infected, given that they

cough and went to a party. If, however, we start wondering “would fewer of us get infected

if we eat more cough drops?” or “given that John tested positive on a PCR test today, is

coughing, and went to a party last week, what would have happened if he had stayed at home

and solved problems in Rudin instead?” then the observational distribution is no longer enough,

since there is a large difference between observing C = 0 for a member of the population, and

setting (or doing) C := 0, which in effect changes the population and hence the distribution.

Unfortunately, classical statistical methodology is mostly concerned with inferring parameters

of a single observational distribution or using it for predictions. According to Fisher (1922,

Section 2), “briefly, and in its most concrete form, the object of statistical methods is the

reduction of data [...] by constructing a hypothetical infinite population, of which the actual

data are regarded as constituting a random sample”. Different authors have given a wide range

of definitions of the goals of statistics (see, e.g., Barnett, 1999, Section 1.1). We would argue

that a central theme is the idea of a statistical model.

A frequentist statistical model is a family P of probability measures on a measurable

space (Ω,K) (see, e.g., Lehmann and Casella, 1998; Shao, 2003). A Bayesian sta-

tistical model furthermore assumes that P is a parameterized family with densities,

and includes a prior distribution on the parameter space (see, e.g., Gelman et al.,

2014; Lauritzen, 2021).

Idealists then assume that there is a true P ∈ P, while others hope for a P ∈ P that gives

reasonable predictions, but, arguably, most would agree that “[t]he task of the statistician

is to say something sensible about P , based on the observation x” (Lauritzen, 2021, Section

1.1). However, saying something sensible about the observational distribution is no longer

enough when we start asking causal questions. To answer those, we can use many different, yet

connected, distributions. We can use interventional distributions to reason about what would

happen if everyone stops coughing and counterfactual distributions to answer what would likely

have happened if John had stayed at home two weeks ago instead of going to that party. All of

this is included with a structural causal model (e.g., Pearl, 2009; Peters et al., 2017), which will

be introduced in the following sections.

2.2 Directed graphs

Before defining structural causal models we introduce graph terminology. The meanings of most

terms are obvious, but consult the formal definitions below when in doubt. The definitions can

be found, in a slightly different form, in, e.g., Lauritzen (1996, Section 2.1.1).

Definition 1 (Graph terms). A directed graph is a pair G = (V,E) where V is a set of vertices

(or nodes) and E ⊆ V 2 is a set of edges. A path is a tuple (γ1, e1, . . . , ek−1, γk) where γi ∈ V
for all i, and ej ∈ {(γj , γj+1), (γj+1, γj)} ∩ E for all j, and γi 6= γj when i 6= j. We often write
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H

X3

Figure 1: Example of a DAG with nodes V = {X1, X2, X3, X4, X5, Y,H} and edges given by the
arrows in the picture. Here we have paY = {X2, H}, ancY = {X1, X2, H}, chY = {X5} = deY ,
and ndY = {X1, X2, X3, X4, H}.

α → β to indicate an edge (α, β) ∈ E and we write, e.g., α ← β → γ to indicate a path

(α, (β, α), β, (β, γ), γ). On a given path, the node β is said to be a collider if α → β ← γ is in

the path for some α and γ. A directed path from α to β is a path (α = γ1, e1, . . . , ek−1, γk = β)

where ej = (γj , γj+1) ∈ E for all j. A directed cycle is a directed path, except that the first node

and the last node are the same (α = γ1, e1, . . . , ek−1, γk = α). A directed graph without directed

cycles is called a directed acyclic graph or DAG. In DAGs a path is completely determined by

the sequence of nodes, since there can only be one edge between any two nodes. The node α is a

parent of β if (α, β) ∈ E, an ancestor of β if there is a directed path from α to β, a descendant of

β if β is an ancestor of α, and a non-descendant of β if it is not a descendant of β nor equal to β.

A node without any parents is called a source node. The sets of all parents, ancestors, children,

descendants, respectively non-descendants of β are denoted paβ, ancβ, chβ, deβ, respectively

ndβ, or pa(β), . . . , nd(β); sometimes the superscript G is added to avoid confusion. When the

nodes are random variables X1, . . . , Xd we sometimes use uppercase PAi to denote the parents

of Xi, and lowercase pai to denote a specific outcome of PAi (and similarly for descendants,

ancestors, and non-descendants). See Fig. 1 for an example of a DAG.

2.3 Structural Causal Models

We are now ready to introduce structural causal models. All definitions and propositions in this

section can be found, sometimes in a slightly different form, in Peters et al. (2017), Bongers

et al. (2021), or Pearl (2009).

A structural causal model, or SCM, C over the d variables X = (X1, . . . , Xd) consists of d

structural assignments (also known as structural equations in, e.g., Pearl, 2009)

X1 := f1(PA1, N1)

...

Xd := fd(PAd, Nd).

and the distribution PN of the jointly independent exogenous variables N1, . . . , Nd. The exoge-

nous variables account for incomplete knowledge of the system or inherent randomness (what
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Spirtes et al., 2000, call pseudo indeterminism respectively indeterminism). PAi ⊆ X 1 is called

the set of causal parents or direct causes of Xi, and play a central role in this thesis. There are

two levels of arbitrariness concerning PAi, the first of which we will simply have to accept, while

the second will be addressed in Proposition 3 and Definition 4 below, which may be skimmed

on a first reading.

First, the term direct cause insinuates that there is, in an absolute sense, a direct link between

the cause and the effect with nothing in-between. However, the term should be understood

relative to the given model, and, in particular, the set of observed variables, as discussed in

Spirtes et al. (2000, Section 3.2). While L (“Likes movies?”) is a direct cause of C (“Went to

the cinema?”) when we only observe (L,C), if we also observe G (“Got tickets for the cinema?”)

we would find that L causes G which causes C; whether L is a direct cause of C depends on the

observed variables. Similarly, there is not a canonical choice of demarcation of what constitutes

a variable. For instance, “Likes movies?” could be split into “Likes silent films?” and “Likes

talkies?”, or further into “Likes Charlie Chaplin movies?” and “Likes Buster Keaton movies?”

and so on; perhaps, someday, even into specific states of the brain. Thus, when we say direct

cause it is not to be understood as some absolute metaphysical concept, but rather as a property

of a certain model of a restricted part of reality.

Second, consider the structural assignment X3 := 2X1+N3 where PA3 = X1. The structural

assignment X3 := 2X1 + 0 ·X2 +N3 leads to the exact same values of X3 for given (X1, X2, N3),

but here PA3 = (X1, X2). Our intended interpretation of PA3 is that it is the set of observed

variables which directly affect the value of X3, so we clearly want to have PA3 = X1 rather than

PA3 = (X1, X2). Luckily, we will see below that there is a unique representation of any SCM,

where each function depends on all of its arguments. First we give a formal definition of SCMs.

Definition 2. A structural causal model, or SCM, over d variables is given by a triple

C = ((N ,K, PN ), (X ,F), f),

where

• (N ,K, PN ) =
(
×d

i=1Ni,
⊗d

i=1Ki,
⊗d

i=1 PNi

)
is a measure space representing the sample

space and distribution of the exogenous variables.

• (X ,F) =
(
×d

i=1Xi,
⊗d

i=1Fi
)

is a measurable space representing the sample space of the

endogenous variables.

• f = (f1, . . . , fd) is a measurable function representing the causal mechanism, where

for all i ∈ {1, . . . , d} there is a set Ii ⊆ {1, . . . , d} such that fi :

(
×
i∈Ii
Xi

)
×Ni → Xi.

In these terms, the choice of f is arbitrary, since Ii could always be the entire set {1, . . . , d}.
The proposition and definition below, which is a modified version of Peters et al. (2017, Remark

6.6), show that there is a natural choice, where each fi depends on as few arguments as possible.

1We adhere to the common abuse of notation of using, e.g., X to denote both a vector and a set of random
variables as circumstances see fit.
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This is done in some detail, since our thesis concerns inferring parents and ancestors, wherefore

it is important for the terms to have a clear meaning.

Proposition 3. Let C = ((N ,K, PN ), (X ,F), f) be an SCM over d variables. There exist unique

sets paCi ⊆ {1, . . . , d} for i ∈ {1, . . . , d} that satisfy the following:

(i) For all i ∈ {1, . . . , d} the function fi only depends on paCi , i.e., there are measurable

functions gi :
(
×i∈paCi

Xi
)
×Ni → Xi such that

fi(xIi , ni) = gi(xpaCi
, ni) for all x ∈ X and PN -almost all ni ∈ Ni.

(ii) The functions (gi) are unique in the sense that if functions (hi) satisfy (i) then

hi(xpaCi
, ni) = gi(xpaCi

, ni) for all x ∈ X and PN -almost all ni ∈ Ni.

(iii) The sets paCi are chosen as small as possible in the sense that there is no i ∈ {1, . . . , d},
proper subset p̃aCi ( paCi , and measurable function g̃i :

(
×i∈p̃aCi

Xi
)
×Ni → Xi such that

gi(xpaCi
, ni) = g̃i(xp̃aCi

, ni) for all x ∈ X and PN -almost all ni ∈ Ni.

Proof. Existence follows by repeatedly removing arguments that some fi doesn’t depend on, as

follows.

1. First, let paCi := Ii and gi := fi for all i ∈ {1, . . . , d}.

2. If, for some i ∈ {1, . . . , d} and p ∈ paCi ,

gi(xpaCi \{p}
, xp, ni) = gi(xpaCi \{p}

, x′p, ni)

for all x ∈ X , x′p ∈ Xp and PN -almost all ni ∈ Ni then assign paCi ← paCi \ {p} and let gi

be redefined as a function gi :
(
×i∈paCi

Xi
)
×Ni → Xi given by

gi(xpaCi
, ni) := fi(xIi , ni), for all x ∈ X ,

and repeat 2.

Otherwise go on to 3.

3. (i) is satisfied by construction. (iii) must be satisfied as well; otherwise 2 would not have

terminated yet. (ii) is satisfied, because if (hi) also satisfy (i) then

hi(xpaCi
, ni) = fi(xIi , ni) = gi(xpaCi

, ni) for all x ∈ X and PN -almost all ni ∈ Ni.

This proves existence.

We now prove uniqueness. Let pai and p̃ai be two sets satisfying (i), (ii) and (iii) with

corresponding functions (gi) and (g̃i). Assume that there is some p ∈ p̃ai \ pai. Since

g̃i(xp̃ai , ni) = fi(xIi , ni) = gi(xpai , ni) for all x ∈ X and PN -almost all ni ∈ Ni
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we have that gi doesn’t depend on p. But then, using step 2 above, p could be removed from

p̃ai, so p̃ai and (g̃i) cannot satisfy (iii). Hence there can’t be a p ∈ p̃ai \ pai, so p̃ai ⊆ pai, and

by symmetry pai ⊆ p̃ai. z

Definition 4. The set paCi is called the set of causal parents of i. The representation of C given

by the functions (gi) in Proposition 3 is called structurally minimal. From now on all SCMs

discussed in this thesis are assumed to be structurally minimal.

Now that the term causal parents has a clear meaning, we introduce the idea of an entailed

graph, which, as we will see in Section 2.5, is a useful tool for reasoning about conditional

independence statements related to an SCM.

Definition 5. The causal graph G entailed by the SCM C is the directed graph over {1, . . . , d}
with edges satisfying paGi = paCi . For i ∈ {1, . . . , d} the causal ancestors, causal descendants,

respectively causal non-descendants of i refer to the ancestors, descendants, respectively non-

descendants of i in the causal graph.

So far we have made no mention of the random variables (X,N) satisfying the structural

assignments of an SCM. The existence and uniqueness of such a solution will be dealt with now.

Definition 6. Random variables X = (X1, . . . , Xd) on (X ,F) and N = (N1, . . . , Nd) on (N ,K)

are called a solution of the SCM C = ((N ,K, PN ), (X ,F), f) if N has distribution PN and

Xi = fi(XpaCi
, Ni) for all i ∈ {1, . . . , d}, a.s.

Given a solution, we often use the variables X1, . . . , Xd as nodes in the causal graph instead of

the indices 1, . . . , d, and let PAi denote XpaCi
.

It is possible that there exists no solution, or that there exist solutions with any distribution

on R (Bongers et al., 2021, Example 2.4). However, these problems disappear when the causal

graph is a DAG due to the implied existence of a causal order.

Definition 7. A permutation π : {1, . . . , d} → {1, . . . , d} is a causal order if all i, j ∈ {1, . . . , d}
with i ∈ ancj satisfy π(i) < π(j).

Proposition 8. If the entailed graph G of C is a DAG, then there exists a causal order.

Proof. Since there is a finite number of nodes, and no directed cycles, there must be a source

node i1. Let π(i1) := 1 and let G2 be the graph where i1 (and all edges involving i1) is removed

from G, but everything else stays the same. This must again be a DAG, so there must again be

a source node i2. Let π(i2) := 2. Remove i2 and continue until there are no nodes left. z

Proposition 9. If the causal graph entailed by the SCM C is a DAG, then there exists a solution

(X,N) and any other solution (X ′, N ′) has the same distribution as (X,N).

Proof. Let π be a causal order and let N have distribution PN . By substituting into the struc-

tural assignments in causal order, we can uniquely determine X from N as follows. We must

set Xπ−1(1) := fπ−1(1)(Nπ−1(1)) since it is a source node. Xπ−1(2) can now be determined from

Nπ−1(2) and possiblyXπ−1(1). ThenXπ−1(3) can be determined fromNπ−1(3) and possiblyXπ−1(1)
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and Xπ−1(2). This can be continued until Xπ−1(d) is determined. By construction (X,N) is a

solution. X ′ must be obtained by the same transformation of N ′, so since N ′
D
= N it follows

that X ′
D
= X. z

All the SCMs that we consider in the following sections are assumed to be acyclic. For more

information on the cyclic case, see Bongers et al. (2021). In this thesis we will include some

unobserved endogenous variables in SCMs. This is often done implicitly, as described in the

following definition.

Definition 10. A partially observed SCM is a pair (C, O) where C is an SCM and O ⊆ {1, . . . , d}
is the set of observed variables. If the letter “H” is used to denote a set of variables in an SCM

over variables V , then it implicitly means that the SCM is a partially observed SCM with

O = V \H. We refer to H as the set of hidden variables.

Example 11. As an example, consider the SCM C over the 7 variables X1, X2, X3, X4, X5, Y,H,

given by the structural assignments

X1 := NX1

X2 := X1 +NX2

H := NH

X3 := H +NX3

Y := X2 +H +NY

X4 := X1 +NX4

X5 := X4 + Y +NX5

where all noise variables are independent with distributions NX1 , NX2 , NX3 , NX4 , NX5

iid∼ N (0, 1)

and NH ∼ N (0, τ). This is a linear Gaussian SCM and the causal graph entailed by this SCM

is exactly the DAG from Fig. 1. Since the letter “H” is used, we know that it is a partially

observed SCM with O = {X1, X2, X3, X4, X5, Y }.

2.4 Interventions

Interventional distributions describe a situation where many aspects of the causal structure (that

is, the SCM) remain the same, while some change (Peters et al., 2017).

Definition 12. Let C be an SCM. An intervention corresponds to changing the structural

assignments f or the noise distribution PN yielding a new modified SCM Ĉ. The modified SCM

Ĉ must be acyclic as well. Interventions are often written in do-notation, denoting, e.g., the

intervention changing f2 to (x5, n2) 7→ x25 + 3n2 by do(X2 := X2
5 + 3N2), so the modified SCM is

denoted by C; do(X2 := X2
5 + 3N2), and the observational distribution entailed by the modified

SCM by P C;do(X2:=X2
5+3N2).

Example 13. Consider again the SCM from Example 11. Let W1,W2,W3,W4,W5
iid∼ N (0, ρ)

such that all W ’s and N ’s are jointly independent. We can do a shift intervention by, for all

i, adding Wi to the structural assignment for Xi yielding the modified SCM Ĉ with structural
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assignments

X1 := NX1 +W1

X2 := X1 +NX2 +W2

H := NH

X3 := H +NX3 +W3

Y := X2 +H +NY

X4 := X1 +NX4 +W4

X5 := X4 + Y +NX5 +W5.

We will refer to the variables W as mean shifts.

2.5 Markov properties and d-separation

Entailed DAGs are useful, because they allow us to quickly read off conditional independence

statements that hold under the entailed distribution, as we will see in this section. The notion of

d-separation in DAGs is central to the connection between DAGs and conditional independence

statements (Pearl, 2009).

Definition 14 (d-separation). Let G = (V,E) be a DAG. A path (γ1, γ2, . . . , γk) is said to be

blocked by a subset U ⊆ V if at least one of the following holds:

(i) There exists i ∈ {2, . . . , k − 1} such that γi ∈ U and the path contains either

γi−1 → γi → γi+1, or γi−1 ← γi ← γi+1, or γi−1 ← γi → γi+1.

(ii) There exists i ∈ {2, . . . , k− 2} such that ({γi} ∪ de(γi))∩U = ∅ and γi is a collider on the

path, i.e. the path contains γi−1 → γi ← γi+1.

If two disjoint subsets W,Z ⊆ V are pairwise disjoint from U , and U blocks all paths between

W and Z, then W and Z are said to be d-separated by U in G and we write W ⊥⊥G Z | U . A

path that is not blocked is called open, and sets that are not d-separated are called d-connected.

A set of equivalent properties, known as the Markov properties, provide a link between

d-separation and conditional independence statements (Lauritzen, 1996).

Definition 15 (Markov properties). Let X = (X1, . . . , Xd) be random variables with distribu-

tion PX , and let G be a DAG. The following three properties are called the recursive density

factorization property, the (directed) global Markov property, respectively the (directed) local

Markov property.

(F) P has density p w.r.t. a product measure, and it factorizes as p(x) =
∏d
i=1 pi(xi | pai),

where (for fixed pai) the function xi 7→ pi(xi | pai) is the density of the conditional

distribution of Xi given PAi = pai.

(G) For all Y,Z,W ⊆ X where Y ⊥⊥G Z |W we have Y ⊥⊥PX
Z |W .

(L) For all Y ∈ X we have Y ⊥⊥PX
NDY \ PAY | PAY .
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If PX satisfies any of the above three properties w.r.t. G, then it is said to be Markov w.r.t. G.

As seen in Lauritzen (1996, Theorem 3.27), all three conditions turn out to be equivalent.

Theorem 16. If PX has density w.r.t. a product measure, then (F)⇔ (G)⇔ (L).

One has to assume the Markov properties if only given a DAG and interventional distributions

(Pearl, 2009, Definition 1.3.1), but for SCMs the entailed distribution is always Markov w.r.t.

the entailed DAG (Pearl, 2009, Theorem 1.4.1).

Proposition 17. Let C be an SCM over X with entailed distribution PX and entailed DAG G.

If PX has density w.r.t. a product measure, then PX is Markov w.r.t. G.

Proof. (L) is immediate from the structural assignments, and (G) and (F) follow from Theo-

rem 16. z

The assumption of density suits the needs of this thesis, but is not necessary since Theorem 16

and Proposition 17 also hold with (F) replaced by (R): the recursive kernel factorization property

stating that P is a recursive combination of Markov kernels adapted to G. If interested, see

Lauritzen (2019, Section 2.6.2).

3 Causal discovery from interventional data

We will now consider three different causal discovery problems and present methods for their

solution. The problems are related to what we call W -bridged SCMs; a class of SCMs that

describe two separate repetitions of the exact same set of interventional experiments.

Sometimes the cause-effect relationships for a phenomenon are unknown, and the researcher

has to infer properties of the underlying SCM from observations. This problem — known as

causal discovery, causal learning, or causal inference — is the causal equivalent of inferring

the observational distribution from observations; a problem known as statistical learning, or

statistical inference. Rather than inferring the entire causal structure, we focus on the problem

of inferring the causes of a single variable of interest.

Our overall goal is to infer the causal parents or ancestors of Y 0 in the linear Gaussian SCM

C0 over (H0, X0, Y 0), where Y 0 is a response of interest, X0 = (X0
1 , . . . , X

0
d) are observable

covariates, and H0 is a set of hidden variables, with the following set of structural assignments

H0 := NH0

X0 := A

H
0

X0

Y 0

+NX0

Y 0 := βtX0 + γtH0 +NY 0 ,

where the matrix A and the vectors β and γ are coefficients. We wish to infer pa(Y 0) ∩X0 or

anc(Y 0) ∩X0: the causal parents or ancestors of Y 0 among X0. We assume that H0 contains

no descendant of X0 and Y 0 (that is, H0 ⊆
⋂d
i=1 NDX0

i
∩ NDY 0), partly to avoid the situation

X0
i → H0

j → Y 0, where a perfect method would wrongly infer X0
i ∈ PAY 0 .
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3.1 W -bridged SCMs

3.1.1 Population case

Consider K different interventional experiments where the k’th experiment corresponds to a

mean shift of X0 by a variable W k. This leads to the modified SCMs (Ck)k∈{1,...,K} given by

Hk := NHk

Xk := A

H
k

Xk

Y k

+NXk +W k

Y k := βtXk + γtHk +NY k

(1)

where W and N are jointly independent. A separate repetition of the exact same experiments

can be described by an SCM (C̃k)k∈{1,...,K} given by

H̃k := Ñ
H̃k

X̃k := A

H̃
k

X̃k

Ỹ k

+ Ñ
X̃k +W k

Ỹ k := βtX̃k + γtH̃k + Ñ
Ỹ k .

(2)

for k ∈ {1, . . . ,K}. This has new noise variables Ñ (representing that it is an independent

repetition of the experiments), while the mean shifts (W k)k∈{1,...,K} and the causal mechanism

(that is, the coefficients A, β and γ) are assumed to be the same for the two sets of experiments

(representing that the experimental setting is exactly the same). We assume that W , N , and Ñ

are jointly independent. We similarly introduce an independent SCM C̃0 for a separate repetition

of the control experiment.

The pair of SCMs (C0, C̃0) can be seen as one SCM consisting of two separate components,

since all noise variables are jointly independent. Intervening with the mean shifts W k, which

yields the pair (Ck, C̃k), connects the two components via a bridge consisting of W k.

Definition 18. The W -bridged SCM (Ck, C̃k) is the SCM over (Xk, Y k, Hk, X̃k, Ỹ k, H̃k,W k)

with structural assignments given by Eqs. (1) and (2) and

W k := NWk .

To be clear: The noise variables are NXk , NY k , NHk , ÑX̃k , ÑỸ k , ÑH̃k , NWk and are, as required

for an SCM, assumed to be jointly independent. We will sometimes leave the structural assign-

ment W k := NWk implicit, simply stating the structural assignments from Eqs. (1) and (2).

The entailed graph of the W -bridged SCM is obtained by drawing the graphs entailed by Ck

and C̃k as two separate components, adding nodes W k
1 , . . . , W k

d and edges Xk
1 ← W k

1 → X̃k
1 ,

. . . , Xk
d ←W k

d → X̃k
d . We will sometimes refer to this graph as the W -bridged DAG. W k forms

a bridge between the, otherwise separate, Ck and C̃k components; the Ck component is equal to

the graph entailed by C0 with, for all i, the node X0
i replaced by Xk

i .
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Example 19. Consider the SCM with shift interventions from Example 13. We can construct

two corresponding W -bridged SCMs (C1, C̃1) and (C2, C̃2) relating to the situation where we do

two separate repetitions of one interventional experiment (so K = 2). The W -bridged SCM

(C1, C̃1) is given by structural assignments W 1 := NW 1 and

X1
1 := NX1

1
+W 1

1

X1
2 := X1

1 +NX1
2

+W 1
2

H1 := NH1

X1
3 := H1 +NX1

3
+W 1

3

Y 1 := X1
2 +H1 +NY 1

X1
4 := X1

1 +NX1
4

+W 1
4

X1
5 := X1

4 + Y 1 +NX1
5

+W 1
5

X̃1
1 := Ñ

X̃1
1

+W 1
1

X̃1
2 := X̃1

1 + Ñ
X̃1

2
+W 1

2

H̃1 := Ñ
H̃1

X̃1
3 := H̃1 + Ñ

X̃1
3

+W 1
3

Ỹ 1 := X̃1
2 + H̃1 + Ñ

Ỹ 1

X̃1
4 := X̃1

1 + Ñ
X̃1

4
+W 1

4

X̃1
5 := X̃1

4 + Ỹ 1 + Ñ
X̃1

5
+W 1

5 ,

and (C2, C̃2) is given by W 2 := NW 2 and

X2
1 := NX2

1
+W 2

1

X2
2 := X2

1 +NX2
2

+W 2
2

H2 := NH2

X2
3 := H2 +NX2

3
+W 2

3

Y 2 := X2
2 +H2 +NY 2

X2
4 := X2

1 +NX2
4

+W 2
4

X2
5 := X2

4 + Y 2 +NX2
5

+W 2
5

X̃2
1 := Ñ

X̃2
1

+W 2
1

X̃2
2 := X̃2

1 + Ñ
X̃2

2
+W 2

2

H̃2 := Ñ
H̃2

X̃2
3 := H̃2 + Ñ

X̃2
3

+W 2
3

Ỹ 2 := X̃2
2 + H̃2 + Ñ

Ỹ 2

X̃2
4 := X̃2

1 + Ñ
X̃2

4
+W 2

4

X̃2
5 := X̃2

4 + Ỹ 2 + Ñ
X̃2

5
+W 2

5 .

Assume that the noise variables are all jointly independent with marginal distributions

N
Xj

i
, Ñ

X̃j
i
, NY j , ÑỸ j ∼ N (0, 1), ÑHj , ÑH̃j ∼ N (0, τ), and N

W j
i
∼ N (0, ρ) for all i, j.

Due to independence of the noise variables, we see that

(X1, Y 1, H1, X̃1, Ỹ 1, H̃1,W 1) ⊥⊥ (X2, Y 2, H2, X̃2, Ỹ 2, H̃2,W 2).

On the other hand, within (C1, C̃1) we do not have

(X1, Y 1, H1) ⊥⊥ (X̃1, Ỹ 1, H̃1)

since W 1 acts as a bridge between the two. Indeed, we, e.g., see that

cov(X1
4 , Ỹ

1) = cov(NX1
1

+W 1
1 +NX1

4
+W 1

4 , ÑX̃1
1

+W 1
1 + Ñ

X̃1
2

+W 1
2 + Ñ

H̃1 + Ñ
Ỹ 1) = VW 1

1 = ρ

while

cov(X1
3 , Ỹ

1) = cov(NH1 +NX1
3

+W 1
3 , ÑX̃1

1
+W 1

1 + Ñ
X̃1

2
+W 1

2 + Ñ
H̃1 + Ñ

Ỹ 1) = 0

even though

cov(X1
3 , Y

1) = cov(NH1 +NX1
3

+W 1
3 , NX1

1
+W 1

1 +NX1
2

+W 1
2 +NH1 +NY 1)) = V NH1 = τ.
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X1
1

X1
2

Y 1

X1
4

X1
5

H1 X1
3

W 1
3

W 1
2

W 1
1

W 1
4

W 1
5

X̃1
1

X̃1
2

Ỹ 1

X̃1
4

X̃1
5

H̃1X̃1
3

Figure 2: Entailed graph of the W -bridged SCM (C1, C̃1).

We can also see that cov(X1
3 , Ỹ

1) = 0 from the entailed DAG of (C1, C̃1), depicted in Fig. 2,

where all paths between X1
3 and Ỹ 1 contain colliders, so X1

3 and Ỹ 1 are d-separated, and hence,

by the global Markov property, independent. On the other hand we see that X1
4 and Ỹ 1 are

not d-separated, since the path X1
4 ← X1

1 ← W 1
1 → X̃1

1 → X̃1
2 → Ỹ 1 is open. The essential

difference is that X1
1 is a non-hidden common ancestor (confounder) of X1

4 and Y 1, so we can

go from X1
4 to X1

1 , then cross the W -bridge from X1
1 to X̃1

1 and proceed to Ỹ 1, while the only

common ancestor of X1
3 and Y 1 is H1, which is not directly connected to the W -bridge, so there

is no place to cross the W -bridge without running into a collider along the way. The following

proposition formalizes this intuition.

Reichenbach’s Common Cause Principle (Reichenbach, 1956), as stated in Peters et al. (2017,

Principle 1.1), says that if X 6⊥⊥ Y , then either X causes Y , Y causes X, or there is a third

variable Z that causes both X and Y . This always holds in SCMs when “causes” is defined to

mean “is an ancestor of” (Peters et al., 2017, Proposition 6.28). We now present a strengthened

version for W -bridged SCMs.

Proposition 20 (A strong version of Reichenbach’s Common Cause Principle). Let k ∈ {1, . . . ,K},
assume i 6= j, and consider the W -bridged SCM (Ck, C̃k).

If Xk
i 6⊥⊥ X̃k

j then at least one of the following holds:

(a) There is some non-hidden confounder X0
` ∈ (anc(X0

i ) ∩ anc(X0
j )) \H0, i.e.,

anc(X0
i ) ∩ anc(X0

j ) 6⊆ H0.

(b) X0
i ∈ anc(X0

j )

(c) X0
j ∈ anc(X0

i )

Similarly, if Xk
i 6⊥⊥ Ỹ k then at least one of the following holds:



3 CAUSAL DISCOVERY FROM INTERVENTIONAL DATA 13

(a) There is some non-hidden confounder X0
` ∈ (anc(X0

i ) ∩ anc(Y 0)) \H0, i.e.,

anc(X0
i ) ∩ anc(Y 0) 6⊆ H0.

(b) X0
i ∈ anc(Y 0)

This proposition holds without the assumption of Gaussianity or linearity.

Proof. Assume that Xk
i 6⊥⊥ X̃k

j . By the global Markov property, this means that there must be

a path between Xk
i and X̃k

j without any colliders in the W -bridged DAG. Any path between

them must pass at least one node in W k to get from the Ck-component to the C̃k-component. If

the path contains more than one node from W k, then there must be W k
t and W k

s , where t 6= s,

such that W k
t → · · · ←W k

s is in the path, so the path contains a collider. Hence the open path

must contain exactly one variable in W k, call it W k
` . The path must contain Xk

` and X̃k
` as well,

since they are the only nodes connected to W k
` . Assume first that ` 6∈ {i, j}. The rest of the

path between Xk
` and Xk

i must be directed Xk
` → · · · → Xk

i , since otherwise there would be a

collider due to the first directed edge W k
` → Xk

` . This means that Xk
` ∈ anc(Xk

i ), and since the

Ck-component of the W -bridged DAG is equal to the graph entailed by C0 (with the superscript

of the nodes changed) it follows that X0
` ∈ anc(X0

i ). The exact same argument shows that X̃k
` ∈

anc(X̃k
j ), so since the C̃k-component of the W -bridged DAG is also equal to the graph entailed by

C0 (with the nodes changed), we get X0
` ∈ anc(X0

j ). Hence X0
` ∈ (anc(X0

i )∩anc(X0
j ))\H0; case

(a). If ` = i, then the argument that X0
` ∈ anc(X0

j ) still works, giving us that X0
i ∈ anc(X0

j );

case (b). Similarly, if ` = j, then the argument that X0
` ∈ anc(X0

i ) still works, giving us that

X0
j ∈ anc(X0

i ); case (c). If Xj was replaced by Y , the only change would be to skip the case

` = j, meaning that either (a) or (b) holds, completing the proof. z

Loosely speaking, an observed variable in the Ck-component and an observed variable in the

C̃k-component cannot be confounded by a hidden variable. The transposes of the statements in

the proposition may make this more clear:

• If X0
i 6∈ anc(X0

j ), and X0
j 6∈ anc(X0

i ), and anc(X0
i ) ∩ anc(X0

j ) ⊆ H0, then Xk
i ⊥⊥ X̃k

j .

• If X0
i 6∈ anc(Y 0), and anc(X0

i ) ∩ anc(Y 0) ⊆ H0, then Xk
i ⊥⊥ Ỹ k.

This motivates the methods proposed in Section 3.5.

3.1.2 Finite data case: truly separate data

In the real world, the exact observational distribution needed is often unknown, and one must

instead rely on approximations using finite data. For all k ∈ {1, . . . ,K}, the W -bridged SCM

(Ck, C̃k) corresponds to a particular experimental setup. Assume that we conduct nk repetitions

in the k’th setup. The i’th repetition (where i ∈ {1, . . . , nk}) in the k’th setting corresponds to

data from the W -bridged SCM (Ck,i, C̃k,i) given by

Hk,i := NHk,i

Xk,i := A

H
k,i

Xk,i

Y k,i

+NXk,i +W k

Y k,i := βtXk,i + γtHk,i +NY k,i .

H̃k,i := Ñ
H̃k,i

X̃k,i := A

H̃
k,i

X̃k,i

Ỹ k,i

+ Ñ
X̃k,i +W k

Ỹ k,i := βtX̃k,i + γtH̃k,i + Ñ
Ỹ k,i .

We assume that W k is the same across all repetitions i ∈ {1, . . . , nk} within each experimental
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setting, but that the rest of the noise variables (NX , NY , NH , ÑX̃
, Ñ

Ỹ
, Ñ

H̃
) are jointly indepen-

dent across all repetitions. This means that, in the finite data setting, for all k ∈ {1, . . . ,K}
we must use observations from the W -bridged SCMs (Ck,i, C̃k,i) to get the properties of the

observational distribution entailed by (Ck, C̃k) that we need.

To this end, we bundle the observations as follows. Let Xk denote the nk × d matrix where

the i’th row is an observation of Xk,i, let Yk ∈ Rnk denote the vector where the i’th element is

an observation of Y k,i, and let

X :=


X1

...

XK

 , Y :=


Y1

...

YK

 ,

that is, X is a
(∑K

k=1 nk

)
× d matrix and Y ∈ R

∑K
k=1 nk .

For the second set of experiments we introduce similar notation X̃ and Ỹ. Thus, (X,Y, X̃, Ỹ)

denotes a complete data set from a set of W -bridged SCMs, corresponding to the real-world

situation, where two separate sets of experiments are carried out. We call this type of data truly

separate data, where the word “truly” is used to distinguish it from “permuted separate data”,

which is introduced below.

3.1.3 Permuted separate data

If we only conduct one set of experiments and obtain the data set (X,Y), then we can emulate a

second set of experiments by permuting the rows of X and Y within each experimental setting,

i.e, for all k ∈ {1, . . . ,K} we let P k be an nk × nk permutation matrix, and permute Yk and

the rows of Xk using P k to obtain

X̆ :=


P 1X1

...

PKXK

 , Y̆ :=


P 1Y1

...

PKYK

 .

The permuted data (X̆, Y̆) is interpreted as an emulation of data (X̃, Ỹ) from a separate set of

experiments. We call this type of data permuted separate data.

yk,i from the same experiment as xk,i is still equal to y̆k,j for some j, since we have merely

permuted our observations; this is not the case for truly separate data. Another way to obtain

a second data set circumvents this problem by, in effect, splitting a single data set into truly

separate data. By splitting the data from each environment in two equally sized portions, instead

of permuting, it does not merely emulate data from W -bridged SCMs; it is data from W -bridged

SCMs. This means that any results about truly separate data holds for data split into two in

this fashion, but for any concrete setting, it halves the number of observations per environment.

3.2 Problems we try to solve

Our thesis tackles three main problems that we state now. They are all formulated in finite

data versions, but the first two problems are also addressed in the population scenarios with

complete knowledge of relevant observational distributions, corresponding to the asymptotic
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case of practically infinite data. Our overall aim in all three problems is to infer the parents or

ancestors of Y 0 among X0; the difference between the problems lies in what we observe.

3.2.1 Problem A: causal discovery from unpaired data

Imagine a real-world scenario where Xk and Y k cannot both be observed in the same experiment,

for instance because observing Xk destroys the physical entity underlying Y k and vice versa.

Instead we conduct all experiments twice, observing X in the first set of experiments and Y in

the second set. This means that we have incomplete truly separate data, since we only observe

(X, Ỹ), and not Y, nor X̃.

Problem A. Infer the parents or ancestors of Y 0 among X0 from the observations (X, Ỹ).

In the k’th experiment our observations are

(Xk, Ỹk) =


xk,1 ỹk,1

...
...

xk,nk ỹk,nk

 .

The pairing is artificial, since xk,i and ỹk,i are no longer from the same experiment, but only

from the arbitrarily numbered i’th repetition in their respective sets of experiments. Indeed, for

all i, j, we have (Xk,i, Ỹ k,i)
D
= (Xk,i, Ỹ k,j), so xk,i might as well be paired with ỹk,j .

In the population case, this problem corresponds to, for all k ∈ {1, . . . ,K}, knowing the

distribution of (Xk, Ỹ k), but not of Y k, nor of X̃k.

3.2.2 Problem B: causal discovery from truly separate data

Of course, there may be useful information in Y or X̃. This leads us to the second problem.

Problem B. Infer the parents and ancestors of Y 0 amongX0 from truly separate data (X,Y, X̃, Ỹ).

By the data splitting technique described in the bottom of Section 3.1.3, a single data set

can be split into truly separate data, so Problem B does not only deal with the situation of two

physically separate sets of experiments.

3.2.3 Problem C: causal discovery from permuted separate data

If we are able to observe xk,i and yk,i paired, and conduct a single set of experiments, then we

obtain a single paired data set (X,Y). By permuting the rows within environments, as explained

in Section 3.1.3, we obtain permuted separate data (X,Y, X̆, Y̆). Any method that is useful in

Problem A and Problem B is also applicable in this case, since permuted separate data is an

emulation of truly separate data. However, they may perform differently, due to the inherent

differences between permuted- and truly separate data, which leads us to the third, and last,

problem.

Problem C. Infer the parents and ancestors of Y 0 among X0 from permuted separate data

(X,Y, X̆, Y̆).
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Remember that we only need to observe (X,Y) to obtain (X,Y, X̆, Y̆). This means that

Problem C deals with the usual setting of one paired data set, but through the unusual means

of permuting the rows to emulate a second data set.

When discussing the methods we will often write X̃ or Ỹ, but one can plug in the permuted

data sets X̆ or Y̆ instead when working with Problem C. However, in population arguments

we strictly consider the case of truly separate data; heuristically, the population arguments for

Problem B should carry over to Problem C to a certain degree, since the permuted data emulates

data from an actual separate set of experiments.

3.3 Distributions of the mean shift W : alltargets and singletargets

We consider two specific distributions of (W 1, . . . ,WK) in the rest of this thesis. In the first

setting, which we call alltargets, there is a σ2 ∈ (0,∞) such that W 1, . . . ,WK iid∼ N (0, σ2Id). In

the second setting — named singletargets — W is distributed as follows: There is a ν2 ∈ (0,∞)

such that for all k ∈ {1, . . . ,K} there exists j ∈ {1, . . . , d} such that W k
j ∼ N (0, ν2) and, for all

i 6= j, we have W k
i = 0. In the singletargets setup we also include observations from a control

experiment with no shift interventions2. Briefly, in alltargets we intervene on all X’s in each

setting, while in singletargets we only intervene on a single X at a time. We focus on alltargets,

but include singletargets to have an example of a somewhat degenerate setting.

Except for the baseline method “mean-shift”, our proposed methods do not assume knowl-

edge of the distribution of W , nor, in particular, of the intervention targets in the different

environments of the singletargets setting.

3.4 OLS

OLS is a well-known regression technique. We briefly discuss its shortcomings in our setting,

before presenting two novel methods, both variations of OLS, designed to overcome its problems.

We define the population parameter

βOLS :=

(
K∑
k=1

cov(Xk)

)−1 K∑
k=1

cov(Xk, Y k),

which is the solution to the following population version of the classic least squares regression

problem3

arg min
β

K∑
k=1

E(Y k − βtXk)2. (3)

The population parameter βOLS can be estimated by the well-known estimator

β̂OLS := (XtX)−1XtY.

2In the singletargets setup we include a baseline method (“mean-shift”), for which control observations would
be needed in a real world case where EY 0 = 0 doesn’t necessarily hold. See Section 3.6.

3See Appendix A for details.
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In the alltargets setting X1, . . . , XK all have the same distribution, since W 1, . . . ,WK do, and

Y 1, . . . , Y K all have the same distribution as well. This means that

βOLS =

(
K∑
k=1

cov(Xk)

)−1 K∑
k=1

cov(Xk, Y k)

=
(
Kcov(X1)

)−1
Kcov(X1, Y 1)

=
(
cov(X1)

)−1
cov(X1, Y 1).

Due to the calculation

(XtX)−1XtY

=


∑K

k=1

∑nk
i=1 x

k,i
1 xk,i1 · · ·

∑K
k=1

∑nk
i=1 x

k,i
1 xk,id

...
. . .

...∑K
k=1

∑nk
i=1 x

k,i
d xk,i1 · · ·

∑K
k=1

∑nk
i=1 x

k,i
d xk,id


−1

∑K
k=1

∑nk
i=1 x

k,i
1 yk,i

...∑K
k=1

∑nk
i=1 x

k,i
d yk,i



=

 1

K

K∑
k=1

1

nk

nk∑
i=1


xk,i1 xk,i1 · · · xk,i1 xk,id

...
. . .

...

xk,id xk,i1 · · · xk,id xk,id



−1

1

K

K∑
k=1

1

nk

nk∑
i=1


xk,i1 yk,i

...

xk,id yk,i


(4)

a modified version of the strong law of large numbers4 gives strong consistency of β̂OLS in the

alltargets setting with truly separate data: β̂OLS a.s→ βOLS for K →∞. It is, however, not enough

that nk →∞ for fixed K, since W k is fixed within environments and thus breaks independence.

Intuitively, if we only have a single environment and observe a large value of W 1, then the

matrices in Eq. (4) are going to be poor estimates of the covariance matrices, no matter how

many observations we take in the one environment, since W 1 will not change.

The minimization problem (3) serves as motivation that βOLS is similar to the ψ in

E(Y 0 | X0 = x) = ψtx. The nonzero entries of ψ ideally correspond to the Markov blanket of

Y 0 in X0 (Peters et al., 2017, Definition 6.26).

Definition 21 (Markov blanket). Let G be a DAG over nodes V , let O ⊆ V , and let Y ∈ V .

The Markov blanket of Y in O is the smallest subset M ⊆ O such that

Y ⊥⊥G O \ ({Y } ∪M) |M.

If V is a set of random variables and PV is Markov w.r.t. G, then

Y ⊥⊥PV
O \ ({Y } ∪M) |M.

A simple d-separation argument shows that the Markov blanket of Y in V is

M = PAY ∪ CHY ∪ PA(CHY ). If V = (X0, Y 0, H0), then the same argument shows that

the Markov blanket of Y 0 in X0 must contain X ∩ (PAY ∪ CHY ∪ PA(CHY )), but it will also

contain any X0
i where there exists a path where every second node is a hidden confounder:

Y 0 ← H0
a → X0

α ← · · · → X0
β ← H0

b → X0
i . It will also contain any parent of such an X0

i . This

4See Appendix B for details. A slight modification of the strong law of large numbers is needed, since the nk

may be different, leading to non-identical (but still independent) distributions.
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indicates that the βOLS coefficients for the parents of Y 0 will be nonzero, but that there will also

be nonzero βOLS coefficients for other variables that are neither parents nor ancestors of Y 0.

In spite of this, we will use OLS as a baseline method, where the variable with the largest

absolute β̂OLS coefficient is taken to be the most likely parent or ancestor.

3.5 Novel methods

One of the problems of OLS is due to hidden confounding; a problem that doesn’t affect

cov(Xk
i , Ỹ

k) and cov(Xk
i , X̃

k
j ), as we saw in Proposition 20. This motivates the two novel

methods, POLS and DPOLS, both of which consist of plugging Ỹ or X̃ into the formula for

βOLS. We also briefly present a third possible method, PICP, that we will not study in detail.

3.5.1 POLS (Permuted OLS)

We replace cov(Xk, Y k) by cov(Xk, Ỹ k) in βOLS to obtain the population parameter

βPOLS :=

(
K∑
k=1

cov(Xk)

)−1 K∑
k=1

cov(Xk, Ỹ k),

with the estimator

β̂POLS := (XtX)−1XtỸ.

Again we find for the alltargets setting that

βPOLS =
(
cov(X1)

)−1
cov(X1, Ỹ 1),

and an argument similar to (4) gives that β̂POLS a.s→ βPOLS for K →∞ in the alltargets setting

with truly separate data. Since POLS only uses (X, Ỹ), it is applicable in Problem A (causal

discovery from unpaired data), unlike OLS.

We will not provide theoretical guarantees for POLS, but the following section presents a

population argument for the similar method DPOLS. Heuristically, this argument also indicates

that POLS is better than OLS, due to similarity between POLS and DPOLS.

When using POLS as a method to identify parents or ancestors below, we will concretely

take the variable with the largest absolute β̂POLS coefficient to be the most likely parent or

ancestor.

3.5.2 DPOLS (Double-Permuted OLS)

Assuming that
∑K

k=1 cov(Xk, X̃k) is invertible, we can also replace cov(Xk) by cov(Xk, X̃k) to

obtain the population parameter

βDPOLS :=

(
K∑
k=1

cov(Xk, X̃k)

)−1 K∑
k=1

cov(Xk, Ỹ k)

with the estimator

β̂DPOLS := (XtX̃)−1XtỸ,
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assuming that XtX̃ is invertible. Again we find for the alltargets setting that

βDPOLS =
(

cov(X1, X̃1)
)−1

cov(X1, Ỹ 1),

and an argument similar to Eq. (4) gives that β̂DPOLS a.s→ βDPOLS for K → ∞ in the alltargets

setting with truly separate data. Combined with the following proposition, due to Niklas Pfister,

this makes a strong case for the usefulness of DPOLS. We use β in the meaning from Eqs. (1)

and (2).

Proposition 22. If
∑K

k=1 cov(Xk, X̃k) is invertible, then βDPOLS = β.

Proof. Since

cov(Xk, Ỹ k) = cov(Xk, βtX̃k + γtH̃k + Ñ
Ỹ k) = cov(Xk, X̃k)β

we have

βDPOLS =

(
K∑
k=1

cov(Xk, X̃k)

)−1 K∑
k=1

cov(Xk, Ỹ k)

=

(
K∑
k=1

cov(Xk, X̃k)

)−1 K∑
k=1

cov(Xk, X̃k)β

= β. z

We will now show that
∑K

k=1 cov(Xk, X̃k) is invertible in the alltargets setting, and that it

is invertible in the singletargets setting if and only if all X’s are intervened on. To prove these

statements, we first give a proposition, which is again based on an unpublished argument by

Niklas Pfister.

Proposition 23. The sum
∑K

k=1 cov(Xk, X̃k) is invertible if and only if
∑K

k=1 cov(W k) is

invertible.

Proof. Let A be the coefficient matrix from Eqs. (1) and (2). Let Θ be the first d columns of

A, let Λ be the next d columns of A, and let α be the last column of A. Then

Xk = ΘHk + ΛXk + αY k +NXk +W k

= ΘHk + ΛXk + α(βtXk + γtHk +NY k) +NXk +W k

= (Λ + αβt)Xk + ΘHk + α(γtHk +NY k) +NXk +W k,

and hence

Xk = (I − Λ− αβt)−1(ΘHk + α(γtHk +NY k) +NXk +W k),

where invertibility of I − Λ− αβt follows from the non-cyclic structure. Similarly, we have

X̃k = (I − Λ− αβt)−1(ΘH̃k + α(γtH̃k + Ñ
Ỹ k) + Ñ

X̃k +W k),

so

cov(Xk, X̃k) = (I − Λ− αβt)−2cov(W k),
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and thus
K∑
k=1

cov(Xk, X̃k) = (I − Λ− αβt)−2
K∑
k=1

cov(W k),

which is invertible if and only if
∑K

k=1 cov(W k) is invertible. z

Using this proposition we can characterize when the invertibility assumption is satisfied in

the alltargets and singletargets settings.

Proposition 24.
∑K

k=1 cov(Xk, X̃k) is invertible in the alltargets setting.

Proof. In the alltargets setting W 1, . . . , WK all have the same distribution so

K∑
k=1

cov(Xk, X̃k) = (I − Λ− αβt)−2
K∑
k=1

cov(W k) = (I − Λ− αβt)−2Kcov(W 1),

showing that it is necessary and sufficient that cov(W 1) is invertible, which it is, since

cov(W 1) ∝ Id

in the alltargets setting. z

Proposition 25. In the singletargets setting,
∑K

k=1 cov(Xk, X̃k) is invertible if and only if all

X’s are intervened on (i.e., if and only if, for all i ∈ {1, . . . , d}, there is a k ∈ {1, . . . ,K} such

that we intervene on Xk
i in the k’th experimental setting).

Proof. In the singletargets setting, cov(W k) is a diagonal matrix with exactly one nonzero entry;

indeed, if i is the index of the intervention target Xk
i in the k’th experiment, then the only

nonzero entry of cov(W k) is in position (i, i). This means that
∑K

k=1 cov(Xk, X̃k) is invertible

if and only if, for all i ∈ {1, . . . , d}, there is at least one k ∈ {1, . . . ,K} such that we intervene

on Xk
i in the k’th experimental setting. z

In many of our singletargets simulations we will intervene on all X’s, but we will also explore

what happens when we only intervene on half of the X’s, meaning that
∑K

k=1 cov(Xk, X̃k) is

non-invertible.

Combining the strong consistency with Propositions 22 and 24 we now have an asymptotic

guarantee for DPOLS applied on truly separate data in the alltargets setting.

Proposition 26. For truly separate data in the alltargets setting, β̂DPOLS
i

a.s→ 0 for K → ∞ if

and only if X0
i is not a parent of Y 0.

As for POLS, when we below use DPOLS to select parents or ancestors, we concretely take

the variable with the largest absolute β̂DPOLS coefficient to be the most likely parent or ancestor.
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3.5.3 Example of OLS, POLS, and DPOLS

Example 27. Consider again the setup from Example 19, and note that it corresponds to an

alltargets setting. By doing calculations similar to those in Example 19 we find that

cov(X1) =


1 + ρ 1 + ρ 0 1 + ρ 2 + 2ρ

1 + ρ 2 + 2ρ 0 1 + ρ 3 + 3ρ

0 0 τ + 1 + ρ 0 τ

1 + ρ 1 + ρ 0 2 + 2ρ 3 + 3ρ

2 + 2ρ 3 + 3ρ τ 3ρ+ 3ρ 8 + 7ρ+ τ

 ,

cov(X1, X̃1) =


ρ ρ 0 ρ 2ρ

ρ 2ρ 0 ρ 3ρ

0 0 ρ 0 0

ρ ρ 0 2ρ 3ρ

2ρ 3ρ 0 3ρ 7ρ

 , cov(X1, Y 1) =


1 + ρ

2 + 2ρ

τ

1 + ρ

4 + 3ρ+ τ

 , cov(X1, Ỹ 1) =


ρ

2ρ

0

ρ

3ρ

 .

Assuming that ρ 6= 0, such that W is non-degenerate, both cov(X1) and cov(X1, X̃1) are

invertible and we obtain that

βOLS = (cov(X1))−1cov(X1, Y 1) =
1

ρ2 + (2τ + 3)ρ+ 3τ + 2


0

(1 + ρ)(τ + 1 + ρ)

(1 + ρ)τ

−((τ + 1)ρ+ 2τ + 1)

(τ + 1)ρ+ 2τ + 1

 ,

βPOLS = (cov(X1))−1cov(X1, Ỹ 1) =


0
ρ

1+ρ

0

0

0

 , βDPOLS = (cov(X1, X̃1))−1cov(X1, Ỹ 1) =


0

1

0

0

0

 .

We see that βDPOLS = β, as expected from Proposition 22 since cov(X1, X̃1) is invertible.

Furthermore, we see that βPOLS = ρ
1+ρβ. This means that βPOLS

i = 0 if and only if X0
i is a

parent of Y 0, so βPOLS identifies non-hidden parents of Y 0 in this example, just like βDPOLS

does generally. We also see that βOLS finds the Markov blanket of Y 0; the only 0-entry in βOLS

is the first, even though X0
1 is an ancestor of Y 0. When ρ is small and τ is large X4 and X5 will

be selected first, while X2 will be selected first when ρ is large and τ is small. So, with usual

OLS, the intervention has to be strong enough to outweigh the confounding due to the hidden

variable.

3.5.4 p-values for OLS, POLS, and DPOLS

We will briefly present possible ways to calculate p-values for OLS, POLS, and DPOLS, and

argue why they may not lead to the desired Type I error rate. We will include the p-values as

a ranking mechanism in our simulation studies, but our focus is elsewhere. For simplicity we

regard X as fixed, and use Y to denote the random vector observed as Y.
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Under the linear regression assumption Y ∼ N (XβOLS, σ2OLSI), with n =
∑K

k=1 nk observa-

tions and d-dimensional X0, the usual formula for the p-value of the hypothesis Hi : βOLS
i = 0

is

pOLS
i := 2P

T ≥
∣∣∣∣∣∣ β̂OLS

i√
σ̂2OLS((XtX)−1)i,i

∣∣∣∣∣∣
 , where T ∼ tn−d. (5)

This is not directly applicable to our case, since, for all k ∈ {1, . . . ,K}, the variables Y k,1, . . . ,

Y k,nk are not independent, because W k is the same in all repetitions of the experiment, so the

covariance assumption is violated.

Under the assumption that Ỹ ∼ N (XβPOLS, σ2POLSI), we can similarly get a p-value for the

hypothesis Hi : βPOLS
i = 0 as

pPOLS
i = 2P

T ≥
∣∣∣∣∣∣ β̂POLS

i√
σ̂2POLS((XtX)−1)i,i

∣∣∣∣∣∣
 , where T ∼ tn−d. (6)

However, under these assumptions EỸ is determined by X, which is not true since they represent

separate experiments. Also, the independence assumption is violated within environments, as

we saw for OLS.

If we assume that Ỹ ∼ N (X̃βDPOLS, σ2DPOLSI) then

β̂DPOLS = (XtX̃)−1XtỸ ∼ N (βDPOLS, σ2DPOLS(XtX̃)−1XtX(XtX̃)−t)

so under the hypothesis Hi : βDPOLS
i = 0 we have

β̂DPOLS
i√

σ̂2DPOLS

(
(XtX̃)−1XtX(XtX̃)−t

)
i,i

∼ tn−d.

Hence we can obtain a p-value as

pDPOLS
i = 2P

T ≥
∣∣∣∣∣∣∣∣

β̂DPOLS
i√

σ̂2DPOLS

(
(XtX̃)−1XtX(XtX̃)−t

)
i,i

∣∣∣∣∣∣∣∣
 , where T ∼ tn−d. (7)

Again, the independence assumption is violated within environments.

We will, despite these shortcomings, be using the p-values above as one criterion to select

parents or ancestors. Concretely we introduce methods OLS-pvals, POLS-pvals, and DPOLS-

pvals, where we take the variable with the smallest p-value to be the most likely parent or

ancestor.

3.5.5 PICP (Permuted ICP)

POLS introduced the idea of plugging (X, Ỹ) into usual OLS. Similarly, one can plug (X, Ỹ)

into ICP. We call this method PICP and mention it as another candidate method that can

be used in Problem A, but we won’t discuss it any further, except for including it in a few

simulations. Concretely, we take the variable with the smallest p-value to be the most likely
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parent or ancestor.

3.6 Baseline method for singletargets: mean-shift

Assume that we are in the singletargets setting and know the intervention target in each envi-

ronment. If EY k is different from EY 0, then the intervention target in the k’th environment

must be an ancestor of Y 0; otherwise the expression for Y k in terms of noise variables would

be the same as for Y 0, so they would have the same mean. Thus, a reasonable method is to

compare the average of Yk (the Y -observations from the k’th environment) to the average of

Y0 (the control Y -observations), and if the difference is sufficiently large (as measured, e.g., by

a t-test), then infer that the intervention target of the k’th environment is an ancestor of Y 0.

In our setup we know that EY 0 = 0, so instead of a t-test we do the following simplified

version, which we call mean-shift. For all i, we give X0
i a weight as follows. If X0

i is not the

intervention target in any environment, then give it weight 0. Else, let Ai ⊆ {1, . . . ,K} be the

set of all k where X0
i is the intervention target in the k’th environment, and, for all k ∈ Ai,

calculate the absolute value of the average of Yk, that is, ak :=
∣∣∣ 1
nk

∑nk
j=1 y

k,j
∣∣∣. The average of

these absolute averages (that is, vi := 1
#Ai

∑
k∈Ai

ak) is the weight for X0
i . We concretely take

the variable with the largest weight to be the most likely parent or ancestor.

Note that we can use Ỹ instead of Y to calculate the weights without changing their distri-

bution, since we don’t use the specific index of a given observation, only its experiment number.

Hence “mean-shift” also works in Problem A (but still only under the assumption of singletargets

with known intervention targets).

4 Simulation experiments

We now present simulation experiments that investigate the performance of POLS and DPOLS,

and compare them to OLS and other baseline methods. All code for simulating and analyzing

data is available on GitHub at https://github.com/adamgorm/bsc-simulations.

4.1 Simulation of data

Since the methods may perform differently depending on the true underlying causal structure,

we first simulate a large number of random DAGs where each DAG is simulated as follows.

Say that we want to simulate a DAG with nh hiddens, d observed covariates (X’s), and a

response Y , that is, a total of 1 + d + nh variables. First a causal order (π−11 , . . . , π−11+d+nh
) of

{1, . . . , 1 + d + nh} is fixed. Then, for all i ∈ {1, . . . , d + nh} and j > i, there is probability

0.4 of adding the edge π−1i → π−1j . Each path coefficient is then sampled by choosing absolute

size uniformly in (0.1, 0.9) and sign by a fair coin flip. The first nh nodes (π−11 , . . . , π−1nh
) is H;

Y is placed in the middle of the remaining nodes, that is, the node π−1
round(1+(1+nh+d+nh)/2)

; the

remaining nodes become X.

The proof of Proposition 9 provides the idea (known as ancestral sampling ; Peters et al., 2017)

of how to sample from an SCM: first noise variables are simulated from the noise distribution,

and then they are substituted into the structural assignments in causal order, to obtain a sample

https://github.com/adamgorm/bsc-simulations
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of the endogenous variables. Since5

(Hk,i, Xk,i, Y k,i) = B(Hk,i, Xk,i, Y k,i) +Nk,i + (0,W k, 0),

where 0 is a 0-vector of the same dimension as Hk,i, and B =

 0 · · ·0
A

(γt βt 0)

 , we see that

(Hk,i, Xk,i, Y k,i) = (I −B)−1(Nk,i + (0,W k, 0)), (8)

where invertibility of I−B follows from the acyclic structure. So by simulating Nk,i and W k from

their respective distributions and plugging into Eq. (8) we get a sample of (Hk,i, Xk,i, Y k,i). For

all environments k ∈ {1, . . . ,K} we do this for all i ∈ {1, . . . , nk} using the same W k. For truly

separate data, we repeat this process a second time (but reusing the already simulated values of

W k) to obtain a separate data set. For permuted separate data, we permute our observations

from the first simulation within environments. See Algorithms 1 and 2 in Appendix C for a

simplified version of our simulation process.

We have simulated DAGs with 30 X’s and 30 H’s (61 variables in total, including Y ), and

with 5 X’s and 5 H’s (11 variables in total, including Y ). We always let NX and NY be

standard Gaussian. We let sdh denote the standard deviation of H, so NH ∼ N (0, sdh2 · I).

In the alltargets setting, we do the same number of repetitions no in each environment, that

is, we set n1 = · · · = nk = no. We denote the total number of environments (which is above

referred to by the symbol K) by ne, and we let Wk ∼ N (0, sdw2 · I). In the singletargets setting

we let nxi denote the total number of X’s intervened on; the nxi targets for interventions are

chosen randomly among all X. nei denotes the total number of different interventional settings

for each of the intervention targets, and no denotes the number of observations to take from

each of these interventional settings. noc denotes the number of control observations, that is,

without any interventions. In the singletargets setting sdw denotes the standard deviation of the

nonzero W k
i . We simulated a total of 4.5 TB of data for the analyses performed in this thesis.

See Tables 1 and 2 for a summary of the parameters, and Tables 3 and 4 for an overview of all

simulations presented below.

4.2 Summary of methods

We explore the proposed methods (POLS, DPOLS, and PICP) and compare them to various

baseline methods. OLS, POLS, and DPOLS calculate regression coefficients (β̂OLS, β̂POLS, and

β̂DPOLS), and take the variable with the largest absolute estimated coefficient to be the most

likely parent or ancestor. We also use a variant of these methods, called OLS-pvals, POLS-

pvals, and DPOLS-pvals, that instead calculate p-values and take the variable with the smallest

p-value to be the most likely parent or ancestor. For the ICP and PICP methods, the ranking is

based on p-values. For the “mean-shift” method, the intervention target leading to the largest

absolute mean shift of Y 0 is taken to be the most likely parent or ancestor. We also include

5When a and b are column vectors, we write (a, b) for the column vector obtained by stacking a on top of b,
and (at bt) for its transpose. A, β and γ are the coefficients from Eqs. (1) and (2), and 0 · · ·0 corresponds to a
matrix with number of rows equal to the dimension of Hk,i and number of columns equal to the dimension of
(Hk,i, Xk,i, Y k,i).



4 SIMULATION EXPERIMENTS 25

Table 1: Parameters for alltargets setting
no Number of observations per environment
ne Number of environments
sdw Standard deviation of the mean shifts W
sdh Standard deviation of the hidden variables

Table 2: Parameters for singletargets setting
no Number of observations per environment
nei Number of environments per intervention target
nxi Number of different intervention targets
noc Number of control observations
sdw Standard deviation of the mean shifts W
sdh Standard deviation of the hidden variables

Fig. # DAGs #X #H no ne sdw sdh

3, 4 1000 30 30 2 {50, . . . , 15000} 7 5
3, 4 1000 30 30 10 {50, . . . , 15000} 7 5
3, 4 min. 100 30 30 2 {25000, . . . , 100000} 7 5
3, 4 min. 100 30 30 10 {25000, . . . , 100000} 7 5
5 1000 30 30 {2, . . . , 300} 500 7 5
5 min. 100 30 30 {650, 1000} 500 7 5
6 1000 30 30 {2, . . . , 5000} 5000/no 7 5
7 1000 30 30 2 2500 {1, . . . , 100} 5
7 1000 30 30 10 500 {1, . . . , 100} 5
8 1000 30 30 2 2500 7 {1, . . . , 100}
8 1000 30 30 10 500 7 {1, . . . , 100}
10 100 5 5 2 {50, . . . , 20000} 7 5
10 100 5 5 10 {5, . . . , 20000} 7 5

Table 3: alltargets simulations. For all choices of parameters, we simulate both truly separate
data and permuted separate data.

Figure # DAGs # X # H no nei nxi noc sdw sdh

9 min. 100 30 30 2 {50, . . . , 2000} 15 2 · nei 7 5
9 min. 100 30 30 10 {50, . . . , 2000} 15 10 · nei 7 5
9 min. 100 30 30 2 {50, . . . , 2000} 30 2 · nei 7 5
9 min. 100 30 30 10 {50, . . . , 2000} 30 10 · nei 7 5
11 100 5 5 2 {50, . . . , 1000} 15 2 · nei 7 5
11 100 5 5 10 {50, . . . , 1000} 15 10 · nei 7 5
11 100 5 5 2 {50, . . . , 1000} 30 2 · nei 7 5
11 100 5 5 10 {50, . . . , 1000} 30 10 · nei 7 5

Table 4: singletargets simulations. For all choices of parameters, we simulate both truly separate
data and permuted separate data.
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two baseline methods based on random guessing. The method “all-random” selects variables at

random, and serves as a worst-case baseline method. Propositions 22 and 26 show that DPOLS

is useful for finding parents. It is, however, still unclear what it does after having selected all

parents; will it start selecting ancestors or guess at random? In order to assess this, we also

include the baseline method “random-after-parents” that is directly given information about

what the correct parents are, but guesses ancestors at random among the remaining variables.

See Tables 5 and 6 for a summary of all methods used here.

Table 5: Novel methods

Name Order of selection

POLS The variable with the largest absolute β̂POLS-
coefficient is the most likely parent or ancestor.

POLS-pvals The variable with the smallest p-value from Eq. (6) is
the most likely parent or ancestor.

DPOLS The variable with the largest absolute β̂DPOLS-
coefficient is the most likely parent or ancestor.

DPOLS-pvals The variable with the smallest p-value from Eq. (7) is
the most likely parent or ancestor.

PICP The variable with the smallest p-value from PICP is
the most likely parent or ancestor

Table 6: Baseline methods

Name Order of selection

OLS The variable with the largest absolute β̂OLS-coefficient
is the most likely parent or ancestor.

OLS-pvals The variable with the smallest p-value from Eq. (5) is
the most likely parent or ancestor.

ICP The variable with the smallest p-value from ICP is the
most likely parent or ancestor

mean-shift The intervention target leading to the largest absolute
mean shift of Y 0 is the most likely parent or ancestor.

all-random Selects at random.

random-after-parents Selects the correct parents first, then selects the re-
maining variables in random order.

4.3 Evaluating the methods

For a given data set, the methods employed here allow us to rank all variables in terms of how

likely they are to be parents or ancestors of Y 0, based on either the absolute magnitude of the

regression coefficients (larger values are better) or the size of the p-values (smaller values are

better). However, the methods do not suggest a specific set of such ancestors and parents. If we,

for a given method, want to select the n most likely variables, we therefore take the n variables
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with the n largest coefficients, or the n variables with the n smallest p-values. To compare the

performance of the different methods we use the area under the ROC curve (AUC) measure.

A ROC (Receiver Operating Characteristic) curve is a plot of the true positive rate against

the false positive rate for a classification method evaluated at several different classification

thresholds; in our case, the classification threshold is the number of variables selected. Thus, a

ROC curve for a given method and a given data set is created by first selecting 0 variables as

parent or ancestor, then the 1 most highly ranked variable, then the two highest ranked, and

so on, until all variables have been selected, and at each step calculating the true positive rate

(TPR) and false positive rate (FPR). AUC is then calculated as the area between the horizontal

axis and the ROC curve. Specifically, the TPR and FPR relating to parents or ancestors are

computed as shown below, where select(method, n) is the set of the n highest ranked variables

for a specified method:

TPRpa(method, n) =
#(select(method, n) ∩ pa(Y 0))

#(X0 ∩ pa(Y 0))

FPRpa(method, n) =
#(select(method, n) \ pa(Y 0))

#(X0 \ pa(Y 0))

TPRanc(method, n) =
#(select(method, n) ∩ anc(Y 0))

#(X0 ∩ anc(Y 0))

FPRanc(method, n) =
#(select(method, n) \ anc(Y 0))

#(X0 \ anc(Y 0))
.

For each data set we construct two ROC curves for each method considered; one comparing

against parents, and one comparing against ancestors. The ROC curve for parents is thus a plot

of the points

{(FPRpa(method, i),TPRpa(method, i)) : i ∈ {0, . . . , d}}

connected by line segments, while the ancestor ROC curve is made from the points

{(FPRanc(method, i),TPRanc(method, i)) : i ∈ {0, . . . , d}}.

We perform multiple simulations for each choice of parameters (between 100 and 1000; see

Tables 3 and 4), compute AUC for each simulation, and finally report the average AUC (and

possibly the quartiles) for that choice of parameters.

4.4 Results

To test the performance of our methods, we first simulated large data sets from DAGs with 30

X’s and 30 H’s (see Tables 3 and 4). We don’t include ICP and PICP in these simulations,

since they are slow on the large data sets, and because Bonferroni correction for the 30 X’s

resulted in most p-values being practically equal to 1 (in small pilot experiments). For both

random baseline methods we plot the average AUC, and a ribbon indicating the first and third

quartiles of the AUC.

We first investigate the performance for different numbers of environments (see Figs. 3 and 4).

In all of these settings our proposed methods, POLS and DPOLS, beat the baseline methods OLS
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and “all-random”. In particular, we see that POLS is a viable method for Problem A (causal

discovery from unpaired data) since it beats “all-random”. Our experiments further affirm

Proposition 26, since the average AUC of DPOLS converges to 1 as ne→∞ on truly separate

data. However, the average AUC of DPOLS doesn’t seem to converge to 1 on permuted separate

data (i.e., data where the separate data set is obtained by permuting the rows of the first data

set), so the equivalent of Proposition 26 for permuted separate data seems untrue generally. On

truly separate data, DPOLS is better at finding ancestors than the baseline method “random-

after-parents”, so it is even useful for finding some of the remaining ancestors after all parents

have been selected. Selecting variables based on coefficient size beats selection based on p-values,

and the performance of OLS-pvals and POLS-pvals decreases for a sufficiently large number of

environments. DPOLS-pvals performs slightly worse than DPOLS, and on permuted data with

10 observations per environment it gets worse for a sufficiently large number of environments.

The quartiles show that the distributions of the observed AUC for POLS, DPOLS, and OLS

are heavily skewed with many large observations (see Fig. 4). The first quartiles of the AUC for

POLS, DPOLS, and OLS are above the third quartile of “all-random”.

In Fig. 5 we investigate the performance for different numbers of observations per environ-

ment. The average AUC of DPOLS converges to 1 for truly separate data as no → ∞. It

also converges to 1 (and does so faster) on permuted data for no → ∞, unlike what we saw in

Fig. 3 for ne→∞. Again we find that DPOLS is better at selecting ancestors than if it started

guessing at random after having selected all parents.

With a total of 5000 observations (that is, no · ne = 5000), is it best to have 1 environment

with all 5000 observations, or 2500 environments with 2 observations each, or somewhere in

between, for instance 50 environments with 100 observations each? And how much does the

performance of POLS and DPOLS vary over the different possible allocations? To investigate

this, we simulate from different allocations of 5000 observations (see Fig. 6). At all allocations

of the 5000 observations, POLS and DPOLS beat the “all-random” baseline method. When

there are few environments with a large number of observations each, POLS and DPOLS are

comparable to OLS, but for many environments with few observations each, DPOLS beats OLS

for both ancestors and parents, and POLS beats OLS for ancestors.

In Fig. 7 we investigate the performance of POLS and DPOLS for different standard devi-

ations of the mean shifts W . The average parent AUC of POLS, DPOLS, and OLS converge

to 1 for sdw → ∞, meaning that they are able to correctly identify parents if the mean shifts

are sufficiently strong. Also, they all beat “random-after-parents”, so they are able to identify

some extra ancestors after having selected all parents. When ordering is based on p-values, the

methods also get better as sdw increases, but at a slower pace.

In Fig. 8 we see that OLS, POLS, and DPOLS become worse for sdh→∞. The differences

between their average AUC converge to 0, but even at sdh = 100 they still beat “all-random”.

Finally, we investigate the performance of POLS and DPOLS in the singletargets setting

(see Fig. 9). Both POLS and DPOLS beat random guessing, and in many of the settings they

beat OLS. They beat the “mean-shift” baseline method when no = 2 and when nxi = 15.

DPOLS seems to converge to selecting the right parents for nei → ∞ on truly separate data

with no = 10, but it requires a higher total number of observations than in the alltargets settings

in Figs. 3 and 5.
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To test the performance of the methods when there are fewer variables, we simulate data sets

from 100 DAGs with 5 X’s and 5 H’s (see Tables 3 and 4). In the alltargets setup, our proposed

methods, POLS and DPOLS, beat both baseline methods (OLS and “all-random”), and PICP

performs better than ICP. POLS and DPOLS have average AUC close to 1 in all settings (see

Fig. 10). In the singletargets setup, POLS and DPOLS both beat the baseline methods OLS

and “all-random”, and their performance is comparable to that of “mean-shift” (see Fig. 11).
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Figure 3: Our proposed methods, POLS and DPOLS, beat the baseline methods OLS and “all-

random”. Since POLS beats “all-random” it is a viable method for Problem A (causal discovery

from unpaired data). DPOLS selects the correct parents asymptotically on truly separate data

(the average AUC converges to 1), and is close to being as good on permuted separate data

(with average AUC between 0.9 and 1). On truly separate data, we even see that DPOLS beats

“random-after-parents”, so it is able to select extra ancestors after having selected all parents.
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Figure 4: In this figure, we compare the distributions of observed AUC values by plotting their

quartiles. The first quartile of AUC for our methods, POLS and DPOLS, are above the third

quartile of AUC for random guessing. The quartiles of POLS beat the quartiles of OLS. The

setting in this plot is the same as in Fig. 3.
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Figure 5: Our proposed methods, POLS and DPOLS, beat the baseline method “all-random”.

DPOLS converges to selecting the right parents for both permuted- and truly separate data; at

the same time, it beats “random-after-parents”, which means that it is able to select some extra

ancestors, even after selecting all parents. POLS beats OLS at selecting ancestors.
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Figure 6: Our proposed methods, POLS and DPOLS, beat random guessing at all combinations

of number of environments and number of observations per environment. The total number

of observations is held constant at 5000, but it is varied between many environments with few

observations per environment, and few environments with many observations per environment.

For truly separate data, more environments are better; for permuted data, performance drops

for the highest number of environments.
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Figure 7: As expected, the methods perform better when the mean shifts have higher standard

deviation. For sufficiently large sdw, they are all able to find the correct parents first, and

are better at finding ancestors than if they started guessing randomly after having selected the

parents.
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Figure 8: As expected, the methods perform worse when the hidden variables have higher

standard deviation. Even for very large sdh, however, they all still perform better than random

guessing. The differences in average AUC between OLS, POLS, and DPOLS seem to converge

to 0 for sdh→∞.
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Figure 9: Both of our proposed methods, POLS and DPOLS, beat random guessing. OLS,

POLS, and DPOLS have similar performance, and all perform worse in these singletargets set-

tings than in the alltargets settings in Fig. 3. They beat the “mean-shift” baseline in many

settings, for instance when not all X’s are intervened on, or with two observations per environ-

ment.
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Figure 10: Both of our proposed methods, POLS and DPOLS, beat both baseline methods

(OLS and “all-random”). They have average AUC around 1, but note that these are very small

settings (where there is often only a single parent). PICP performs better than ICP.
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Figure 11: Both of our proposed methods, POLS and DPOLS, beat the baseline methods (OLS

and “all-random”), while their performance is comparable to that of “mean-shift”.
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5 Discussion

We have seen that, in the alltargets setting, DPOLS will asymptotically select all or almost

all parents, and that it is able to select some extra ancestors after this. Hence, it is a viable

method for Problems B (causal discovery from truly separate data) and C (causal discovery

from permuted separate data); it allows us to discover all direct causes in the presence of

hidden variables and with unknown intervention targets without any randomization. Future

work should provide more extensive theoretical guarantees for DPOLS, in particular in the

setting of permuted separate data; for small sample sizes, we have seen that it performs better

on permuted separate data than on truly separate data.

We have also seen that POLS is a viable method for Problem A (causal discovery from

unpaired data), since it performs better than guessing at random. Future work should provide

theoretical guarantees, but also consider whether there are other methods that may beat it in

Problem A, perhaps using the idea of plugging (X, Ỹ) into a well-known method.

Finally, our presentation of the methods does not lend itself to practical use in real situations,

since we have not given any way of deciding how many variables to select; we only provide an

ordering from most likely to be parent or ancestor to least likely. We have not spent much time

on this problem, but a few unincluded exploratory simulations indicate that the p-values we have

provided do not lead to the desired Type I error rate. Future work should find a way to decide

significance in practice. Another discussion of practical importance is whether the assumptions

are reasonable in real-world scenarios. For instance, is it reasonable that we only intervene on

observed variables, and that all experiments in the same environment have the exact same mean

shifts?
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Appendix A Population least squares

In this appendix we show that βOLS = arg minβ
∑K

k=1E(Y k − βtXk)2. Exchanging differentia-

tion and expectation, and using the chain rule, yields

Dβ

K∑
k=1

E(Y k − βtXk)2 =
K∑
k=1

E(2(Y k − βtXk)(−Xt))

= 2

K∑
k=1

(βtE(Xk(Xk)t)− E(Y k(Xk)t))

= 2βt
K∑
k=1

cov(Xk)− 2
K∑
k=1

cov(Xk, Y k).

Hence, the only solution to Dβ
∑K

k=1E(Y k − βtXk)2 = 0 is

β =

(
K∑
k=1

cov(Xk)

)−1 K∑
k=1

cov(Xk, Y k).

Since

D2
β

K∑
k=1

E(Y k − βtXk)2 = 2
K∑
k=1

cov(Xk) � 0

the function

β 7→
K∑
k=1

E(Y k − βtXk)2

is strictly convex, so it attains its unique minimum in the unique stationary point

βOLS :=

(
K∑
k=1

cov(Xk)

)−1 K∑
k=1

cov(Xk, Y k).

Appendix B Modified strong law of large numbers for strong

consistency

In this appendix we show that β̂OLS a.s→ βOLS for K → ∞ in the alltargets setting with truly

permuted data (and the same results for POLS and DPOLS follow by similar arguments). Let

a, b ∈ {1, . . . , d} be arbitrary, and let Zk := 1
nk

∑nk
i=1X

k,i
a Xk,i

b for all k ∈ N. We need that

1

K

K∑
k=1

Zk
a.s→ cov(X1

a , X
1
b ) for K →∞. (9)

By Eq. (4), this will give that XtX
a.s→ cov(X1) and a similar argument (where Xb is replaced

by Y in (9)) gives XtY
a.s→ cov(X1, Y 1), and thus, by continuity, that β̂OLS = (XtX)−1XtY

a.s→
(cov(X1))−1cov(X1, Y 1) for K →∞, as desired.

So let us prove (9). If all nk are equal (that is, if there is φ ∈ R such that nk = φ for all

k ∈ N), then Z1, Z2, . . . are iid. so the strong law of large numbers directly gives (9). If nk are

not all equal, then Z1, Z2, . . . are still independent, but not identically distributed, so we have
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to do a small variation of the strong law of large numbers, as follows.

We will modify a proof of the strong law of large numbers from Hansen (2020) to suit our

needs. Let Uk := Zk − cov(X1
a , X

1
b ) for all k ∈ N. If we can prove that

∞∑
k=1

V

(
Uk
k

)
<∞ (10)

then the Khintchine-Kolmogorov Theorem gives

K∑
k=1

Uk
k

a.s→ V for K →∞

for some limit variable V . Kronecker’s Lemma then gives

1

K

K∑
k=1

Uk
a.s→ 0 for K →∞

which gives (9).

We now prove (10). We have

∞∑
k=1

V

(
Uk
k

)
=
∞∑
k=1

1

k2n2k
V

(
nk∑
i=1

Xk,i
a Xk,i

b

)

=
∞∑
k=1

1

k2n2k

 nk∑
i=1

V (Xk,i
a Xk,i

b ) +
∑
i 6=j

cov(Xk,i
a Xk,i

b , Xk,j
a Xk,j

b )

 .

Since Xk,1, . . . , Xk,d are identically distributed we get

nk∑
i=1

V (Xk,i
a Xk,i

b ) = nkV (Xk,1
a Xk,1

b ).

Since (Xk,i, Xk,j)
D
= (Xk,i′ , Xk,j′) for all choices of i 6= j and i′ 6= j′ we get∑

i 6=j
cov(Xk,i

a Xk,i
b , Xk,j

a Xk,j
b ) = (n2k − nk)cov(Xk,1

a Xk,1
b , Xk,2

a Xk,2
b ).

Since X1,i, X2,i, . . . are identically distributed we get

1

n2k

∣∣∣nkV (Xk,1
a , Xk,1

b ) + (n2k − nk)cov(Xk,1
a Xk,1

b , Xk,2
a Xk,2

b )
∣∣∣ ≤ V (X1,1

a X1,1
b )+|cov(X1,1

a X1,1
b , X1,2

a X1,2
b )|

which doesn’t depend on k, so

∞∑
k=1

V

(
Uk
k

)
=
∞∑
k=1

1

k2n2k

(
nkV (Xk,1

a Xk,1
b ) + (n2k − nk)cov(Xk,1

a Xk,1
b , Xk,2

a Xk,2
b )
)
<∞.

This finishes the proof for OLS. A similar argument works for POLS and DPOLS; you just have

to insert X̃, X̃, Ỹ, and Ỹ in the appropriate places.
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Appendix C Simulating data

This appendix contains algorithms illustrating a simplified version of how we simulate truly

separate data and permuted separate data.

Algorithm 1: Simulating truly separate data

Input :

• A list B of matrices giving path coefficients (each entry being a B-matrix for Eq. (8))

• The distributions of mean shifts (PWk) and the distributions of noise variables (PNk),
for all environments k ∈ {1, . . . ,K}.

• The number of observations n1, . . . , nK for each environment.

Output: A list containing, for all B in B, a realisation (X,Y, X̃, Ỹ)B from the k
W -bridged SCMs with path coefficients given by B, noise distributions PNk

and mean shift distributions PWk , and with n1, . . . , nK observations in each
environment.

for B in B do
for k = 1 to K do

wk ← sampleFrom(PWk);
for i = 1 to nk do

nk,i ← sampleFrom(PNk);

(hk,i, xk,i, yk,i)← (I −B)−1(nk,i + (0, wk, 0));

ñk,i ← sampleFrom(PNk);

(h̃k,i, x̃k,i, ỹk,i)← (I −B)−1(ñk,i + (0, wk, 0));

end

(Xk,Yk)←

 xk,1 yk,1

...
...

xk,nk yk,nk

;

(X̃k, Ỹk)←

 x̃k,1 ỹk,1

...
...

x̃k,nk ỹk,nk

;

end

(X,Y, X̃, Ỹ)B ←

X1 Y1 X̃1 Ỹ1

...
...

...
...

Xk Yk X̃k Ỹk

;

end
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Algorithm 2: Simulating permuted separate data

Input :

• A list B of matrices giving path coefficients (each entry being a B-matrix for Eq. (8))

• The distributions of mean shifts (PWk) and the distributions of noise variables (PNk),
for all environments k ∈ {1, . . . ,K}.

• The number of observations n1, . . . , nK for each environment.

Output: A list containing, for all B in B, a realisation (X,Y, X̆, Y̆)B from the k
emulated W -bridged SCMs with path coefficients given by B, noise
distributions PNk and mean shift distributions PWk , and with n1, . . . , nK
observations in each environment.

for B in B do
for k = 1 to K do

wk ← sampleFrom(PWk);
for i = 1 to nk do

nk,i ← sampleFrom(PNk);

(hk,i, xk,i, yk,i)← (I −B)−1(nk,i + (0, wk, 0));

end

(Xk,Yk)←

 xk,1 yk,1

...
...

xk,nk yk,nk

;

σ ← getRandomPermutation({1, . . . , nk});
(X̆k, Y̆k)← permuteEachColumn((Xk,Yk), σ);

end

(X,Y, X̆, Y̆)B ←

X1 Y1 X̆1 Y̆1

...
...

...
...

XK YK X̆K Y̆K

;

end
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